42 research outputs found

    A Good Score Does not Lead to A Good Generative Model

    Full text link
    Score-based Generative Models (SGMs) is one leading method in generative modeling, renowned for their ability to generate high-quality samples from complex, high-dimensional data distributions. The method enjoys empirical success and is supported by rigorous theoretical convergence properties. In particular, it has been shown that SGMs can generate samples from a distribution that is close to the ground-truth if the underlying score function is learned well, suggesting the success of SGM as a generative model. We provide a counter-example in this paper. Through the sample complexity argument, we provide one specific setting where the score function is learned well. Yet, SGMs in this setting can only output samples that are Gaussian blurring of training data points, mimicking the effects of kernel density estimation. The finding resonates a series of recent finding that reveal that SGMs can demonstrate strong memorization effect and fail to generate

    Overview of Sensing Attacks on Autonomous Vehicle Technologies and Impact on Traffic Flow

    Full text link
    While perception systems in Connected and Autonomous Vehicles (CAVs), which encompass both communication technologies and advanced sensors, promise to significantly reduce human driving errors, they also expose CAVs to various cyberattacks. These include both communication and sensing attacks, which potentially jeopardize not only individual vehicles but also overall traffic safety and efficiency. While much research has focused on communication attacks, sensing attacks, which are equally critical, have garnered less attention. To address this gap, this study offers a comprehensive review of potential sensing attacks and their impact on target vehicles, focusing on commonly deployed sensors in CAVs such as cameras, LiDAR, Radar, ultrasonic sensors, and GPS. Based on this review, we discuss the feasibility of integrating hardware-in-the-loop experiments with microscopic traffic simulations. We also design baseline scenarios to analyze the macro-level impact of sensing attacks on traffic flow. This study aims to bridge the research gap between individual vehicle sensing attacks and broader macroscopic impacts, thereby laying the foundation for future systemic understanding and mitigation

    Sequencing-enabled Hierarchical Cooperative CAV On-ramp Merging Control with Enhanced Stability and Feasibility

    Full text link
    This paper develops a sequencing-enabled hierarchical connected automated vehicle (CAV) cooperative on-ramp merging control framework. The proposed framework consists of a two-layer design: the upper level control sequences the vehicles to harmonize the traffic density across mainline and on-ramp segments while enhancing lower-level control efficiency through a mixed-integer linear programming formulation. Subsequently, the lower-level control employs a longitudinal distributed model predictive control (MPC) supplemented by a virtual car-following (CF) concept to ensure asymptotic local stability, l_2 norm string stability, and safety. Proofs of asymptotic local stability and l_2 norm string stability are mathematically derived. Compared to other prevalent asymptotic local-stable MPC controllers, the proposed distributed MPC controller greatly expands the initial feasible set. Additionally, an auxiliary lateral control is developed to maintain lane-keeping and merging smoothness while accommodating ramp geometric curvature. To validate the proposed framework, multiple numerical experiments are conducted. Results indicate a notable outperformance of our upper-level controller against a distance-based sequencing method. Furthermore, the lower-level control effectively ensures smooth acceleration, safe merging with adequate spacing, adherence to proven longitudinal local and string stability, and rapid regulation of lateral deviations

    Beyond 1D and oversimplified kinematics: A generic analytical framework for surrogate safety measures

    Full text link
    This paper presents a generic analytical framework tailored for surrogate safety measures (SSMs) that is versatile across various highway geometries, capable of encompassing vehicle dynamics of differing dimensionality and fidelity, and suitable for dynamic, real-world environments. The framework incorporates a generic vehicle movement model, accommodating a spectrum of scenarios with varying degrees of complexity and dimensionality, facilitating the prediction of future vehicle trajectories. It establishes a generic mathematical criterion to denote potential collisions, characterized by the spatial overlap between a vehicle and any other entity. A collision risk is present if the collision criterion is met at any non-negative time point, with the minimum threshold representing the remaining time to collision. The framework's proficiency spans from conventional one-dimensional (1D) SSMs to extended multi-dimensional, high-fidelity SSMs. Its validity is corroborated through simulation experiments that assess the precision of the framework when linearization is performed on the vehicle movement model. The outcomes showcase remarkable accuracy in predicting vehicle trajectories and the time remaining before potential collisions occur. The necessity of higher-dimensional and higher-fidelity SSMs is highlighted through a comparison of conventional 1D SSMs and extended three-dimensional (3D) SSMs. The results showed that using 1D SSMs over 3D SSMs could be off by 300% for non-critical Time-to-Collision (TTC) values and about 20% for critical TTC values (below 1.5 seconds). Furthermore, the framework's practical application is demonstrated through a case study that actively evaluates all potential conflicts, underscoring its effectiveness in dynamic, real-world traffic situations

    FedCBO: reaching group consensus in clustered Federated learning through Consensus-Based Optimization

    Get PDF
    Federated learning is an important framework in modern machine learning that seeks to integrate the training of learning models from multiple users, each user having their own local data set, in a way that is sensitive to data privacy and to communication loss constraints. In clustered federated learning, one assumes an additional unknown group structure among users, and the goal is to train models that are useful for each group, rather than simply training a single global model for all users. In this paper, we propose a novel solution to the problem of clustered federated learning that is inspired by ideas in consensus-based optimization (CBO). Our new CBO-type method is based on a system of interacting particles that is oblivious to group memberships. Our model is motivated by rigorous mathematical reasoning, including a mean field analysis describing the large number of particles limit of our particle system, as well as convergence guarantees for the simultaneous global optimization of general non-convex objective functions (corresponding to the loss functions of each cluster of users) in the mean-field regime. Experimental results demonstrate the efficacy of our FedCBO algorithm compared to other state-of-the-art methods and help validate our methodological and theoretical work

    GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation via Large Language Models

    Full text link
    The remarkable capabilities and intricate nature of Artificial Intelligence (AI) have dramatically escalated the imperative for specialized AI accelerators. Nonetheless, designing these accelerators for various AI workloads remains both labor- and time-intensive. While existing design exploration and automation tools can partially alleviate the need for extensive human involvement, they still demand substantial hardware expertise, posing a barrier to non-experts and stifling AI accelerator development. Motivated by the astonishing potential of large language models (LLMs) for generating high-quality content in response to human language instructions, we embark on this work to examine the possibility of harnessing LLMs to automate AI accelerator design. Through this endeavor, we develop GPT4AIGChip, a framework intended to democratize AI accelerator design by leveraging human natural languages instead of domain-specific languages. Specifically, we first perform an in-depth investigation into LLMs' limitations and capabilities for AI accelerator design, thus aiding our understanding of our current position and garnering insights into LLM-powered automated AI accelerator design. Furthermore, drawing inspiration from the above insights, we develop a framework called GPT4AIGChip, which features an automated demo-augmented prompt-generation pipeline utilizing in-context learning to guide LLMs towards creating high-quality AI accelerator design. To our knowledge, this work is the first to demonstrate an effective pipeline for LLM-powered automated AI accelerator generation. Accordingly, we anticipate that our insights and framework can serve as a catalyst for innovations in next-generation LLM-powered design automation tools.Comment: Accepted by ICCAD 202

    Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction

    Full text link
    Neural Radiance Field (NeRF) based 3D reconstruction is highly desirable for immersive Augmented and Virtual Reality (AR/VR) applications, but achieving instant (i.e., < 5 seconds) on-device NeRF training remains a challenge. In this work, we first identify the inefficiency bottleneck: the need to interpolate NeRF embeddings up to 200,000 times from a 3D embedding grid during each training iteration. To alleviate this, we propose Instant-3D, an algorithm-hardware co-design acceleration framework that achieves instant on-device NeRF training. Our algorithm decomposes the embedding grid representation in terms of color and density, enabling computational redundancy to be squeezed out by adopting different (1) grid sizes and (2) update frequencies for the color and density branches. Our hardware accelerator further reduces the dominant memory accesses for embedding grid interpolation by (1) mapping multiple nearby points' memory read requests into one during the feed-forward process, (2) merging embedding grid updates from the same sliding time window during back-propagation, and (3) fusing different computation cores to support the different grid sizes needed by the color and density branches of Instant-3D algorithm. Extensive experiments validate the effectiveness of Instant-3D, achieving a large training time reduction of 41x - 248x while maintaining the same reconstruction quality. Excitingly, Instant-3D has enabled instant 3D reconstruction for AR/VR, requiring a reconstruction time of only 1.6 seconds per scene and meeting the AR/VR power consumption constraint of 1.9 W.Comment: Accepted by ISCA'2

    Gen-NeRF: Efficient and Generalizable Neural Radiance Fields via Algorithm-Hardware Co-Design

    Full text link
    Novel view synthesis is an essential functionality for enabling immersive experiences in various Augmented- and Virtual-Reality (AR/VR) applications, for which generalizable Neural Radiance Fields (NeRFs) have gained increasing popularity thanks to their cross-scene generalization capability. Despite their promise, the real-device deployment of generalizable NeRFs is bottlenecked by their prohibitive complexity due to the required massive memory accesses to acquire scene features, causing their ray marching process to be memory-bounded. To this end, we propose Gen-NeRF, an algorithm-hardware co-design framework dedicated to generalizable NeRF acceleration, which for the first time enables real-time generalizable NeRFs. On the algorithm side, Gen-NeRF integrates a coarse-then-focus sampling strategy, leveraging the fact that different regions of a 3D scene contribute differently to the rendered pixel, to enable sparse yet effective sampling. On the hardware side, Gen-NeRF highlights an accelerator micro-architecture to maximize the data reuse opportunities among different rays by making use of their epipolar geometric relationship. Furthermore, our Gen-NeRF accelerator features a customized dataflow to enhance data locality during point-to-hardware mapping and an optimized scene feature storage strategy to minimize memory bank conflicts. Extensive experiments validate the effectiveness of our proposed Gen-NeRF framework in enabling real-time and generalizable novel view synthesis.Comment: Accepted by ISCA 202

    Identification of an eight-LncRNA signature as the prognostic LncRNA markers in hepatocellular carcinoma patients

    Get PDF
    Long non-coding RNA (lncRNA) signature has been reputable for the predetermination of cancer prognosis. In the present study, we constructed a lncRNA model to predict the survival outcomes for hepatocellular carcinoma (HCC) patients. Using the transcriptome data from TCGA HCC samples, we identified that NEAT1 and MALAT1 were highly expressed in HCC and other tumor subtypes compared to the adjacent normal tissues. Based on the LASSO Cox regression model, we identified an eight-lncRNA signature that significantly correlated with the overall survival and disease-free survival of the HCC training group. The prognostic value of this signature was validated using the test group. Further analysis suggested that this signature was associated with the clinicopathological parameters such as vascular tumor invasion, pathological stage, and tumor grade. Integrated functional analysis showed that these eight-lncRNAs were involved in the cell cycle, metabolic process, and immune response. In conclusion, we constructed an applicable eight-lncRNA signature that is robust and reliable for the prognosis of HCC. This signature may provide an efficient clinical prediction for HCC patients, and further study is required to uncover the function of the identified lncRNAs better
    corecore