976 research outputs found
Stochastic Attraction-Repulsion Embedding for Large Scale Image Localization
This paper tackles the problem of large-scale image-based localization (IBL)
where the spatial location of a query image is determined by finding out the
most similar reference images in a large database. For solving this problem, a
critical task is to learn discriminative image representation that captures
informative information relevant for localization. We propose a novel
representation learning method having higher location-discriminating power. It
provides the following contributions: 1) we represent a place (location) as a
set of exemplar images depicting the same landmarks and aim to maximize
similarities among intra-place images while minimizing similarities among
inter-place images; 2) we model a similarity measure as a probability
distribution on L_2-metric distances between intra-place and inter-place image
representations; 3) we propose a new Stochastic Attraction and Repulsion
Embedding (SARE) loss function minimizing the KL divergence between the learned
and the actual probability distributions; 4) we give theoretical comparisons
between SARE, triplet ranking and contrastive losses. It provides insights into
why SARE is better by analyzing gradients. Our SARE loss is easy to implement
and pluggable to any CNN. Experiments show that our proposed method improves
the localization performance on standard benchmarks by a large margin.
Demonstrating the broad applicability of our method, we obtained the third
place out of 209 teams in the 2018 Google Landmark Retrieval Challenge. Our
code and model are available at https://github.com/Liumouliu/deepIBL.Comment: ICC
Shape Interaction Matrix Revisited and Robustified: Efficient Subspace Clustering with Corrupted and Incomplete Data
The Shape Interaction Matrix (SIM) is one of the earliest approaches to
performing subspace clustering (i.e., separating points drawn from a union of
subspaces). In this paper, we revisit the SIM and reveal its connections to
several recent subspace clustering methods. Our analysis lets us derive a
simple, yet effective algorithm to robustify the SIM and make it applicable to
realistic scenarios where the data is corrupted by noise. We justify our method
by intuitive examples and the matrix perturbation theory. We then show how this
approach can be extended to handle missing data, thus yielding an efficient and
general subspace clustering algorithm. We demonstrate the benefits of our
approach over state-of-the-art subspace clustering methods on several
challenging motion segmentation and face clustering problems, where the data
includes corrupted and missing measurements.Comment: This is an extended version of our iccv15 pape
- …