57,001 research outputs found
AutoEncoder Inspired Unsupervised Feature Selection
High-dimensional data in many areas such as computer vision and machine
learning tasks brings in computational and analytical difficulty. Feature
selection which selects a subset from observed features is a widely used
approach for improving performance and effectiveness of machine learning models
with high-dimensional data. In this paper, we propose a novel AutoEncoder
Feature Selector (AEFS) for unsupervised feature selection which combines
autoencoder regression and group lasso tasks. Compared to traditional feature
selection methods, AEFS can select the most important features by excavating
both linear and nonlinear information among features, which is more flexible
than the conventional self-representation method for unsupervised feature
selection with only linear assumptions. Experimental results on benchmark
dataset show that the proposed method is superior to the state-of-the-art
method.Comment: accepted by ICASSP 201
Efficient Batch Query Answering Under Differential Privacy
Differential privacy is a rigorous privacy condition achieved by randomizing
query answers. This paper develops efficient algorithms for answering multiple
queries under differential privacy with low error. We pursue this goal by
advancing a recent approach called the matrix mechanism, which generalizes
standard differentially private mechanisms. This new mechanism works by first
answering a different set of queries (a strategy) and then inferring the
answers to the desired workload of queries. Although a few strategies are known
to work well on specific workloads, finding the strategy which minimizes error
on an arbitrary workload is intractable. We prove a new lower bound on the
optimal error of this mechanism, and we propose an efficient algorithm that
approaches this bound for a wide range of workloads.Comment: 6 figues, 22 page
- …