60 research outputs found

    Comparative Proteomic Analysis of Differentially Expressed Proteins in the Earthworm <i>Eisenia fetida</i> during <i>Escherichia coli</i> O157:H7 Stress

    No full text
    Escherichia coli O157:H7 is an intestine-inhabiting bacterium associated with many severe disease outbreaks worldwide. It may enter the soil environment with the excreta of infected animals (e.g., horses, cattle, chickens) and humans. Earthworms can protect themselves against invading pathogens because of their efficient innate defense system. Identification of differential proteomic responses to E. coli O157:H7 may provide a better understanding of the survival mechanisms of the earthworm Eisenia fetida that lives in E. coli O157:H7-polluted environments. Whole earthworm extracts, collected at days 7, 14, 21, and 28 after E. coli O157:H7 stress, were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. In total, 124 proteins demonstrated significant regulation at least at one time point, and 52 proteins were identified by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry and database searching. Compared with control samples, 11 protein spots were up-regulated and 41 were down-regulated for at least one time point. The identified proteins, including heat shock protein 90, fibrinolytic protease 0, gelsolin-like protein, lombricine kinase, coelomic cytolytic factor-1, manganous superoxide dismutase, catalase, triosephosphate isomerase, extracellular globin-4, lysenin, intermediate filament protein, and glyceraldehyde-3-phosphate dehydrogenase, are involved in several processes, including transcription, translation, the tricarboxylic acid cycle, and the glucose metabolic process. Thus, our study provides a functional profile of the E. coli O157:H7-responsive proteins in earthworms. We suggest that the variable levels and trends in these spots on the gel may be useful as biomarker profiles to investigate E. coli O157:H7 contamination levels in soils

    Comparative Proteomic Analysis of Differentially Expressed Proteins in the Earthworm <i>Eisenia fetida</i> during <i>Escherichia coli</i> O157:H7 Stress

    No full text
    Escherichia coli O157:H7 is an intestine-inhabiting bacterium associated with many severe disease outbreaks worldwide. It may enter the soil environment with the excreta of infected animals (e.g., horses, cattle, chickens) and humans. Earthworms can protect themselves against invading pathogens because of their efficient innate defense system. Identification of differential proteomic responses to E. coli O157:H7 may provide a better understanding of the survival mechanisms of the earthworm Eisenia fetida that lives in E. coli O157:H7-polluted environments. Whole earthworm extracts, collected at days 7, 14, 21, and 28 after E. coli O157:H7 stress, were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. In total, 124 proteins demonstrated significant regulation at least at one time point, and 52 proteins were identified by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry and database searching. Compared with control samples, 11 protein spots were up-regulated and 41 were down-regulated for at least one time point. The identified proteins, including heat shock protein 90, fibrinolytic protease 0, gelsolin-like protein, lombricine kinase, coelomic cytolytic factor-1, manganous superoxide dismutase, catalase, triosephosphate isomerase, extracellular globin-4, lysenin, intermediate filament protein, and glyceraldehyde-3-phosphate dehydrogenase, are involved in several processes, including transcription, translation, the tricarboxylic acid cycle, and the glucose metabolic process. Thus, our study provides a functional profile of the E. coli O157:H7-responsive proteins in earthworms. We suggest that the variable levels and trends in these spots on the gel may be useful as biomarker profiles to investigate E. coli O157:H7 contamination levels in soils

    Comparative Proteomic Analysis of Differentially Expressed Proteins in the Earthworm <i>Eisenia fetida</i> during <i>Escherichia coli</i> O157:H7 Stress

    No full text
    Escherichia coli O157:H7 is an intestine-inhabiting bacterium associated with many severe disease outbreaks worldwide. It may enter the soil environment with the excreta of infected animals (e.g., horses, cattle, chickens) and humans. Earthworms can protect themselves against invading pathogens because of their efficient innate defense system. Identification of differential proteomic responses to E. coli O157:H7 may provide a better understanding of the survival mechanisms of the earthworm Eisenia fetida that lives in E. coli O157:H7-polluted environments. Whole earthworm extracts, collected at days 7, 14, 21, and 28 after E. coli O157:H7 stress, were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. In total, 124 proteins demonstrated significant regulation at least at one time point, and 52 proteins were identified by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry and database searching. Compared with control samples, 11 protein spots were up-regulated and 41 were down-regulated for at least one time point. The identified proteins, including heat shock protein 90, fibrinolytic protease 0, gelsolin-like protein, lombricine kinase, coelomic cytolytic factor-1, manganous superoxide dismutase, catalase, triosephosphate isomerase, extracellular globin-4, lysenin, intermediate filament protein, and glyceraldehyde-3-phosphate dehydrogenase, are involved in several processes, including transcription, translation, the tricarboxylic acid cycle, and the glucose metabolic process. Thus, our study provides a functional profile of the E. coli O157:H7-responsive proteins in earthworms. We suggest that the variable levels and trends in these spots on the gel may be useful as biomarker profiles to investigate E. coli O157:H7 contamination levels in soils

    Comparative Proteomic Analysis of Differentially Expressed Proteins in the Earthworm <i>Eisenia fetida</i> during <i>Escherichia coli</i> O157:H7 Stress

    No full text
    Escherichia coli O157:H7 is an intestine-inhabiting bacterium associated with many severe disease outbreaks worldwide. It may enter the soil environment with the excreta of infected animals (e.g., horses, cattle, chickens) and humans. Earthworms can protect themselves against invading pathogens because of their efficient innate defense system. Identification of differential proteomic responses to E. coli O157:H7 may provide a better understanding of the survival mechanisms of the earthworm Eisenia fetida that lives in E. coli O157:H7-polluted environments. Whole earthworm extracts, collected at days 7, 14, 21, and 28 after E. coli O157:H7 stress, were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. In total, 124 proteins demonstrated significant regulation at least at one time point, and 52 proteins were identified by matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry and database searching. Compared with control samples, 11 protein spots were up-regulated and 41 were down-regulated for at least one time point. The identified proteins, including heat shock protein 90, fibrinolytic protease 0, gelsolin-like protein, lombricine kinase, coelomic cytolytic factor-1, manganous superoxide dismutase, catalase, triosephosphate isomerase, extracellular globin-4, lysenin, intermediate filament protein, and glyceraldehyde-3-phosphate dehydrogenase, are involved in several processes, including transcription, translation, the tricarboxylic acid cycle, and the glucose metabolic process. Thus, our study provides a functional profile of the E. coli O157:H7-responsive proteins in earthworms. We suggest that the variable levels and trends in these spots on the gel may be useful as biomarker profiles to investigate E. coli O157:H7 contamination levels in soils

    Table8_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX

    No full text
    Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p

    DataSheet1_Superwetting membrane-based strategy for high-flux enrichment of ethanol from ethanol/water mixture.docx

    No full text
    Ethanol, which can be scalable produced from fermented plant materials, is a promising candidate to gasoline as the next-generation liquid fuel. As an energy-efficient alternative to distillation, membrane-based strategies including pervaporation and reverse osmosis have been developed to recover ethanol from fermentation broths. However, these approaches suffer the drawback of low separation flux. Herein, we report a superwetting membrane system to enrich ethanol from water in a high-flux manner. By synergistically regulating surface energy of the solid porous membrane and hydration between an additive inorganic potassium salt and water, concentrated ethanol can rapidly wetting and permeate the porous membrane, with the salt solution being blocked. Using this newly developed superwetting membrane system, we can achieve fast enrichment of ethanol from water, with flux of two orders magnitude higher than that of pervaporation and reverse osmosis membranes.</p

    Table3_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX

    No full text
    Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p

    Table1_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX

    No full text
    Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p

    Table5_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX

    No full text
    Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p

    Table4_Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis.XLSX

    No full text
    Introduction: Traumatic tracheal stenosis (TTS) is a major cause of complex difficult airways, without clinically definitive efficacious drugs available. The aim of this study was to provide a general view of interactions between micro and messenger ribonucleic acids (miRNAs and mRNAs) and many potential mechanisms in TTS via small RNA sequencing.Methods: In this study, the identification of miRNAs was completed using small RNA sequencing and samples from four TTS patients and four normal control cases. By using bioinformatics tools, such as miRanda and RNAhybrid, for identifying the candidate target genes of miRNAs with differential expression in each sample, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were employed for enriching the predicted target genes of miRNAs with differential expression based on the correspondence between miRNAs and their target genes. We detected the expression of the candidate miRNAs using quantitative real-time polymerase chain reaction (qRT-PCR).Results: Twenty-four miRNAs with significant differential expression were identified, including 13 upregulated and 11 downregulated ones. Bioinformation technology was adopted to predict 2,496 target genes. These miRNA-target genes were shown to be primarily enriched in cells and organelles with catalytic activity and binding function, such as binding proteins, small molecules, and nucleotides. Finally, they were observed to process into TTS through the intercellular and signal regulation of related inflammatory signaling and fibrosis signaling pathways. QRT-PCR confirmed the upregulation of miR21-5p and miR214-3p and the downregulation of miR141-3p and miR29b-3p, which was expected to become a high-specific miRNA for TTS.Conclusion: Among all the miRNAs detected, 24 miRNAs demonstrated differential expression between the TTS and normal control groups. A total of 2,496 target genes were predicted by bioinformation technology and enriched in inflammatory and fibrotic signaling pathways. These results provide new ideas for further studies and the selection of targets for TTS in the future.</p
    corecore