11 research outputs found
Conversion of Phytochemicals by Lactobacilli: (Phospho)-β-glucosidases Are Specific for Glucosylated Phytochemicals Rather than Disaccharides
Food-fermenting lactobacilli convert glycosylated phytochemicals
to glycosyl hydrolases and thereby alter their biological activity.
This study aimed to investigate the microbial transformation of β-glucosides
of phytochemicals in comparison with utilization of cellobiose. Four
homofermentative and four heterofermentative lactobacilli were selected
to represent the metabolic diversity of Lactobacillaceae. The genomes of Lactobacillus crispatus, Companilactobacillus paralimentarius, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum encoded for 8 to 22
enzymes, predominantly phospho-β-glucosidases, with predicted
activity on β-glucosides. Levilactobacillus hammesii and Furfurilactobacillus milii encoded
for 3 β-glucosidases, Furfurilactobacillus rossiae for one, and Fructilactobacillus sanfranciscensis for none. The hydrolysis of amygdalin, esculin, salicin, glucosides
of quercetin and genistein, and ginsenosides demonstrated that several
strains hydrolyzed β-glucosides of phytochemicals but not cellobiose.
Taken together, several of the carbohydrate-active enzymes of food-fermenting
lactobacilli are specific for glycosides of phytochemicals
Conversion of Phytochemicals by Lactobacilli: (Phospho)-β-glucosidases Are Specific for Glucosylated Phytochemicals Rather than Disaccharides
Food-fermenting lactobacilli convert glycosylated phytochemicals
to glycosyl hydrolases and thereby alter their biological activity.
This study aimed to investigate the microbial transformation of β-glucosides
of phytochemicals in comparison with utilization of cellobiose. Four
homofermentative and four heterofermentative lactobacilli were selected
to represent the metabolic diversity of Lactobacillaceae. The genomes of Lactobacillus crispatus, Companilactobacillus paralimentarius, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum encoded for 8 to 22
enzymes, predominantly phospho-β-glucosidases, with predicted
activity on β-glucosides. Levilactobacillus hammesii and Furfurilactobacillus milii encoded
for 3 β-glucosidases, Furfurilactobacillus rossiae for one, and Fructilactobacillus sanfranciscensis for none. The hydrolysis of amygdalin, esculin, salicin, glucosides
of quercetin and genistein, and ginsenosides demonstrated that several
strains hydrolyzed β-glucosides of phytochemicals but not cellobiose.
Taken together, several of the carbohydrate-active enzymes of food-fermenting
lactobacilli are specific for glycosides of phytochemicals
Technology of Gold Ores Dressing
Import 05/08/2014Téma této diplomové práce zní Technologie úpravy zlatonosných rud. První tři kapitoly teoretické části se zabývají obecným popisem významu zlata pro lidskou společnost, využitím zlata, charakteristikou zlata z chemického a mineralogického hlediska a jeho výskyt jako příměs v minerálech. Dále jsou zaměřeny na ložiska a těžbu zlata v České republice, ve světě a popis zkoumané lokality, ze které pochází materiál použitý v experimentální části. Čtvrtá kapitola obsahuje výčet možných metod úpravy zlata, které napomáhají získat kvalitní koncentráty ze zlatonosného ložiska. Experimentální část práce je orientovaná na laboratorní pokusy, které byly provedeny v rámci této diplomové práce. Cílem této kapitoly bylo vyhodnocení nejlepších flotačních sběračů, ověření vlivu otáček na výnos koncentrátu, přečistná flotace (získání nejkvalitnějšího koncentrátu), ověření hydrofobnosti zlata a doplňkové úpravnické metody – gravitační rozdružování pomocí odstředivých sil.The topic of this thesis was Technology of Gold Ores Dressing. The first three chapters of the theoretical part deals with a general description of the importance of gold for human society, gold usage, the chemical and mineralogical characterization characterization of gold and presence additive in minerals . Next part focuses on deposits and gold mining in the Czech Republic, in the world and a description of the investigated locality from which comes the material used for the experiments. The fourth chapter contains methods for processing of gold which help to get high quality concentrates from gold deposits. The experimental part of the work was focused on laboratory experiments that have been conducted in this thesis. The aims of this chapter were to evaluate the best flotation collectors, verification the effect of speed on the yield of concentrate, clearing flotation (gain the highest quality concentrate), verification hydrophobicity of gold and the gravity separation method using centrifugal forces.Prezenční542 - Institut hornického inženýrství a bezpečnostivýborn
Effects of OA supplementation on pH (I) and NH<sub>3</sub>-N concentration (II) of fermentation liquor <i>in vitro</i>.
<p>All values are mean ± SEM. <sup>a, b, c</sup> Means that are sharing different superscripts are different (<i>P</i> < 0.05) within the same incubation stage.</p
Effects of OA supplementation on the gas production parameters <i>in vitro</i>.
<p>Effects of OA supplementation on the gas production parameters <i>in vitro</i>.</p
<i>In vitro</i> accumulative gas production of <i>Leymus chinensis</i> supplemented with OA.
<p><i>In vitro</i> accumulative gas production of <i>Leymus chinensis</i> supplemented with OA.</p
C18 fatty acids concentrations at different fermentation times (g/100 mL fermentation liquid).
<p>C18 fatty acids concentrations at different fermentation times (g/100 mL fermentation liquid).</p
Effects of OA supplementation on CH<sub>4</sub> (I) and H<sub>2</sub> production (II) of <i>in vitro</i> incubation.
<p>All values are mean ± SEM. <sup>a, b, c</sup> Means that are sharing different superscripts are different (<i>P</i> < 0.05) within the same incubation stage.</p
Effects of OA supplementation on VFAs concentrations of fermentation liquor <i>in vitro</i>.
<p>All values are mean ± SEM. <sup>a, b, c</sup> Means that are sharing different superscripts are different (<i>P</i> < 0.05) within the same incubation stage.</p
Additional file 1 of Multi-omics reveal mechanisms of high enteral starch diet mediated colonic dysbiosis via microbiome-host interactions in young ruminant
Additional file 1: Table S1. Ingredient and chemical composition of the basal diet. Table S2. The specific primers for the qPCR of β-Actin and tested mRNAs. Table S3. Effects of different hindgut enteral starch diets on the rumen fermentation parameters in growing goats. Table S4. The origin of metabolites. Figure S1. The flow chart of the present study. Figure S2. Fecal evaluation system for dairy goats. Figure S3. The dry matter intake (DMI) and content of luminal nutrients (n = 20 for DMI, and n = 8 for luminal content of nutrients). Figure S4. The gene expression of colonic bile acids receptors (n = 6). Figure S5. Spearman correlation among the host phenotypes, nutrients, microbes, and microbial functions