8,184 research outputs found

    Towards Structured Deep Neural Network for Automatic Speech Recognition

    Full text link
    In this paper we propose the Structured Deep Neural Network (Structured DNN) as a structured and deep learning algorithm, learning to find the best structured object (such as a label sequence) given a structured input (such as a vector sequence) by globally considering the mapping relationships between the structure rather than item by item. When automatic speech recognition is viewed as a special case of such a structured learning problem, where we have the acoustic vector sequence as the input and the phoneme label sequence as the output, it becomes possible to comprehensively learned utterance by utterance as a whole, rather than frame by frame. Structured Support Vector Machine (structured SVM) was proposed to perform ASR with structured learning previously, but limited by the linear nature of SVM. Here we propose structured DNN to use nonlinear transformations in multi-layers as a structured and deep learning algorithm. It was shown to beat structured SVM in preliminary experiments on TIMIT

    Unsupervised Spoken Term Detection with Spoken Queries by Multi-level Acoustic Patterns with Varying Model Granularity

    Full text link
    This paper presents a new approach for unsupervised Spoken Term Detection with spoken queries using multiple sets of acoustic patterns automatically discovered from the target corpus. The different pattern HMM configurations(number of states per model, number of distinct models, number of Gaussians per state)form a three-dimensional model granularity space. Different sets of acoustic patterns automatically discovered on different points properly distributed over this three-dimensional space are complementary to one another, thus can jointly capture the characteristics of the spoken terms. By representing the spoken content and spoken query as sequences of acoustic patterns, a series of approaches for matching the pattern index sequences while considering the signal variations are developed. In this way, not only the on-line computation load can be reduced, but the signal distributions caused by different speakers and acoustic conditions can be reasonably taken care of. The results indicate that this approach significantly outperformed the unsupervised feature-based DTW baseline by 16.16\% in mean average precision on the TIMIT corpus.Comment: Accepted by ICASSP 201
    • …
    corecore