78 research outputs found

    n_TOF: Measurements of Key Reactions of Interest to AGB Stars

    Get PDF
    In the last 20 years, the neutron time-of-flight facility n_TOF at CERN has been providing relevant data for the astrophysical slow neutron capture process (s process). At n_TOF, neutron-induced radiative capture (n,ő≥) as well as (n,p) and (n,őĪ) reaction cross sections are measured as a function of energy, using the time-of-flight method. Improved detection systems, innovative ideas and collaborations with other neutron facilities have lead to a considerable contribution of the n_TOF collaboration to studying the s process in asymptotic giant branch stars. Results have been reported for stable and radioactive samples, i.e.,24,25,26Mg,26Al,33S,54,57Fe,58,59,62,63Ni,70,72,73Ge,90,91,92,93,94,96Zr,139La,140Ce,147Pm,151Sm,154,155,157Gd,171Tm,186,187,188Os,197Au,203,204Tl,204,206,207Pb and209Bi isotopes, while others are being studied or planned to be studied in the near future. In this contribution, we present an overview of the most successful achievements, and an outlook of future challenging measurements, including ongoing detection system developments

    Mixing Uncertainties in Low-Metallicity AGB Stars: The Impact on Stellar Structure and Nucleosynthesis

    Get PDF
    The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M‚äô < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M‚äô=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at least ∼3 × 10−4 M‚äô, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided

    Impact of newly measured 26Al(n, p)26Mg and 26Al(n, őĪ)23Na reaction rates on the nucleosynthesis of 26Al in stars

    Get PDF
    The cosmic production of the short-lived radioactive nuclide 26Al is crucial for our understanding of the evolution of stars and galaxies. However, simulations of the stellar sites producing 26Al are still weakened by significant nuclear uncertainties. We re-evaluate the 26Al(n, p)26Mg, and 26Al(n, őĪ)23Na ground state reactivities from 0.01 GK to 10 GK, based on the recent n TOF measurement combined with theoretical predictions and a previous measurement at higher energies, and test their impact on stellar nucleosynthesis. We computed the nucleosynthesis of low- and high-mass stars using the Monash nucleosynthesis code, the NuGrid mppnp code, and the FUNS stellar evolutionary code. Our low-mass stellar models cover the 2-3 M‚ėČ mass range with metallicities between Z = 0.01 and 0.02, their predicted 26Al/27Al ratios are compared to 62 meteoritic SiC grains. For high-mass stars, we test our reactivities on two 15 M‚ėČ models with Z = 0.006 and 0.02. The new reactivities allow low-mass AGB stars to reproduce the full range of 26Al/27Al ratios measured in SiC grains. The final 26Al abundance in high-mass stars, at the point of highest production, varies by a factor of 2.4 when adopting the upper, or lower limit of our rates. However, stellar uncertainties still play an important role in both mass regimes. The new reactivities visibly impact both low- and high-mass stars nucleosynthesis and allow a general improvement in the comparison between stardust SiC grains and low-mass star models. Concerning explosive nucleosynthesis, an improvement of the current uncertainties between T9‚ąľ0.3 and 2.5 is needed for future studies

    First Measurement of 72Ge(n,ő≥) at n_TOF

    Get PDF
    9th European Summer School on Experimental Nuclear AstrophysicsThe slow neutron capture process (s-process) is responsible for producing about half of the elemental abundances heavier than iron in the universo

    Measurement of 73Ge(n,ő≥) cross sections and implications for stellar nucleosynthesis

    Get PDF
    73Ge(n,ő≥) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73Ge produced in stars, which would explain the low isotopic abundance of 73Ge in the solar system.Fondo de Ciencia de Austria J3503Consejo de Instalaciones de Ciencia y Tecnolog√≠a Reino Unido ST / M006085 / 1Consejo Europeo de Investigaci√≥n ERC-2015-StG Nr.677497

    Destruction of the cosmic ő≥ -ray emitter 26 Al in massive stars: Study of the key 26 Al ( n , őĪ ) reaction

    Get PDF
    Neutron destruction reactions of the cosmic ő≥ -ray emitter 26Al are of importance to determine the amount of 26Al ejected into our galaxy by supernova explosions and for 26Al production in asymptotic giant branch stars. We performed a new measurement of the 26Al(n, őĪ) reaction up to 160-keV neutron energy at the neutron time-of-flight facilities n_TOF at CERN and GELINA at EC-JRC. We provide strengths for ten resonances, six of them for the first time. We use our data to calculate astrophysical reactivities for stellar temperatures up to 0.7 GK. Our results resolve a discrepancy between the two previous direct measurements of this reaction, and indicate higher stellar destruction rates than the most recently recommended reactivity.Austrian Science Fund (FWF). J3503The U.K. Science and Technologies Facilities Council (STFC) ST/L005824/1 y No. ST/M006085/1The European Research Council ERC-2015-STG. 677497European Cooperation in Science and Technology (Cost Action), programa Chemical Elements as Tracers of the Evolution of the Cosmos(ChETEC) CA1611

    Measurement of the 70Ge(n,ő≥) cross section up to 300 keV at the CERN n_TOF facility

    Get PDF
    Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,ő≥) cross section on 70Ge, which is mainly produced in the s process, was measured at the neutron time-of-Ô¨āight facility n_TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT =5 keV tokT =100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sectionsareinagreementwithWalterandBeer(1985)overmostoftheneutronenergyrangecovered,whilethey aresystematicallysmallerforneutronenergiesabove150keV.Wehavecalculatedisotopicabundancesproduced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60‚Äď80.Austrian Science Fund J3503Adolf Messer Foundation ST/M006085/1European Research Council ERC2015-StGCroatian Science Foundation IP-2018-01-857

    Destruction of the cosmic ő≥-ray emitter 26 Al in massive stars: Study of the key 26 Al ( n , p ) reaction

    Get PDF
    The 26 Al (n ,p) 26 Mg reaction is the key reaction impacting on the abundances of the cosmic y-ray emitter 26 Al produced in massive stars and impacts on the potential pollution of the early solar system with 26 Al by asymptotic giant branch stars. We performed a measurement of the 26 Al ( n , p ) 26 Mg cross section at the high-flux beam line EAR-2 at the n_TOF facility (CERN). We report resonance strengths for eleven resonances, nine being measured for the first time, while there is only one previous measurement for the other two. Our resonance strengths are significantly lower than the only previous values available. Our cross-section data range to 150 keV neutron energy, which is sufficient for a reliable determination of astrophysical reactivities up to 0.5 GK stellar temperature.Austrian Science Fund (FWF) J3503Consejo de Instalaciones Científicas y Tecnológicas del Reino Unido (STFC) ST/L005824/1 y ST/M006085/1,Consejo Europeo de Investigación ERC-2015-STG Nr. 67749

    Neutron capture cross sections of 69Ga and 71Ga at 25 keV and e peak = 90 keV

    Get PDF
    This project was supported by EFNUDAT, ERINDA, the EuroGENESIS project MASCHE, HIC for FAIR and BMBF (05P15RFFN1).We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the ő≥ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.publishersversionpublishe

    Women Scientists Who Made Nuclear Astrophysics

    Get PDF
    Female role models reduce the impact on women of stereotype threat, i.e., of being at risk of conforming to a negative stereotype about one's social, gender, or racial group [1,2]. This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible [3]. In response to this situation, we present a selection of twelve outstanding women who helped to develop nuclear astrophysics
    • ‚Ķ
    corecore