3 research outputs found

    Electrospun Fibrous Scaffolds Promote Breast Cancer Cell Alignment and Epithelial–Mesenchymal Transition

    No full text
    In this work we created electrospun fibrous scaffolds with random and aligned fiber orientations in order to mimic the three-dimensional structure of the natural extracellular matrix (ECM). The rigidity and topography of the ECM environment have been reported to alter cancer cell behavior. However, the complexity of the in vivo system makes it difficult to isolate and study such extracellular topographical cues that trigger cancer cells’ response. Breast cancer cells were cultured on these fibrous scaffolds for 3–5 days. The cells showed elongated spindle-like morphology in the aligned fibers, whereas they maintained a mostly flat stellar shape in the random fibers. Gene expression profiling of these cells post seeding showed up-regulation of transforming growth factor β-1 (TGFβ-1) along with other mesenchymal biomarkers, suggesting that these cells undergo epithelial–mesenchymal transitions in response to the polymer scaffold. The results of this study indicate that the topographical cue may play a significant role in tumor progression

    Facile Co-Assembly Process to Generate Core–Shell Nanoparticles with Functional Protein Corona

    No full text
    A simple and robust protocol to maintain the structural feature of polymer–protein core–shell nanoparticles (PPCS-NPs) is developed based on the synergistic interactions between proteins and functional polymers. Using the self-assembly method, a broad range of proteins can be assembled to the selective water-insoluble polymers containing pyridine groups. The detailed analysis of the PPCS-NPs structure was conducted using FESEM and thin-sectioned TEM. The results illustrated that the protein molecules are located on the corona of the PPCS-NPs. While proteins are displacing between water and polymer to minimize the interfacial energy, the polymer offers a unique microenvironment to maintain protein structure and conformation. The proposed mechanism is based on a fine balance between hydrophobicity and hydrophilicity, as well as hydrogen bonding between proteins and polymer. The PPCS-NPs can serve as a scaffold to incorporate both glucose oxidase (GOX) and horseradish peroxidase (HRP) onto a single particle. Such a GOX-HRP bienzymatic system showed a ∼20% increase in activity in comparison to the mixed free enzymes. Our method therefore provides a unique platform to preserve protein structure and conformation and can be extended to a number of biomolecules

    Mutant Plant Viruses with Cell Binding Motifs Provide Differential Adhesion Strengths and Morphologies

    No full text
    The ability of Tobacco mosaic virus (TMV) to tolerate various amino acid insertions near its carboxy terminus is well-known. Typically these inserts are based on antigenic sequences for vaccine development with plant viruses as carriers. However, we determined that the structural symmetries and the size range of the viruses could also be modeled to mimic the extracellular matrix proteins by inserting cell-binding sequences to the virus coat protein. The extracellular matrix proteins play important roles in guiding cell adhesion, migration, proliferation, and stem cell differentiation. Previous studies with TMV demonstrated that the native and phosphate-modified virus particles enhanced stem cell differentiation toward bone-like tissues. Based on these studies, we sought to design and screen multiple genetically modified TMV mutants with reported cell adhesion sequences to expand the virus-based tools for cell studies. Here, we report the design of these mutants with cell binding amino acid motifs derived from several proteins, the stabilities of the mutants against proteases during purification and storage, and a simple and rapid functional assay to quantitatively determine adhesion strengths by centrifugal adhesion assay. Among the mutants, we found that cells on TMV expressing RGD motifs formed filopodial extensions with weaker attachment profiles, whereas the cells on TMV expressing collagen I mimetic sequence displayed little spreading but higher attachment strengths
    corecore