7 research outputs found
NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
Simple Summary
The identification of potential molecular alterations is standard in the diagnostic pathway of non-small-cell lung cancer (NSCLC). The aim of this study is to determine the prevalence of NTRK fusions in NSCLC in a routine diagnostic setting using immunohistochemistry, fluorescence in situ hybridization, and RNA-based next-generation sequencing. A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). In total, 0.2% of all patients were NTRK positive. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. RNA-NGS or FISH NTRK positive results were mutually exclusive with alterations in EGFR/ALK/ROS1/BRAF/RET or KRAS.
Abstract
(1) Background: The main objectives of our study are (i) to determine the prevalence of NTRK (neurotrophic tyrosine kinase) fusions in a routine diagnostic setting in NSCLC (non-small cell lung cancer) and (ii) to investigate the feasibility of screening approaches including immunohistochemistry (IHC) as a first-line test accompanied by fluorescence in situ hybridization (FISH) and RNA-(ribonucleic acid-)based next-generation sequencing (RNA-NGS). (2) Methods: A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). (3) Results: One hundred and thirty-three patients (14.8%) were IHC positive; consecutive RNA-NGS testing revealed two patients (0.2%) with NTRK fusions (NTRK1-EPS15 (epidermal growth factor receptor pathway substrate 15) and NTRK1-SQSTM1 (sequestosome 1)). Positive RNA-NGS was confirmed by FISH, and NTRK-positive patients benefited from targeted treatment. All patients with direct FISH testing were negative. RNA-NGS- or FISH-positive results were mutually exclusive with alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF (proto-oncogene B-Raf), RET (rearranged during transfection) or KRAS (kirsten rat sarcoma viral oncogene). Excluding patients with one of these alterations raised the prevalence of NTRK-fusion positivity among panTrk-(tropomyosin receptor kinase-) IHC positive samples to 30.5%. (4) Conclusions: NTRK fusion-positive lung cancers are exceedingly rare and account for less than 1% of patients in unselected all-comer populations. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. We suggest including panTrk-IHC in a diagnostic workflow followed by RNA-NGS. Excluding patients with concurrent molecular alterations to EGFR/ALK/ROS1/BRAF/RET or KRAS might narrow the target population.Ignyta, Inc.Roche Pharm
NTRK Gene Fusions in Non-Small-Cell Lung Cancer: Real-World Screening Data of 1068 Unselected Patients
(1) Background: The main objectives of our study are (i) to determine the prevalence of NTRK (neurotrophic tyrosine kinase) fusions in a routine diagnostic setting in NSCLC (non-small cell lung cancer) and (ii) to investigate the feasibility of screening approaches including immunohistochemistry (IHC) as a first-line test accompanied by fluorescence in situ hybridization (FISH) and RNA-(ribonucleic acid-)based next-generation sequencing (RNA-NGS). (2) Methods: A total of 1068 unselected consecutive patients with NSCLC were screened in two scenarios, either with initial IHC followed by RNA-NGS (n = 973) or direct FISH testing (n = 95). (3) Results: One hundred and thirty-three patients (14.8%) were IHC positive; consecutive RNA-NGS testing revealed two patients (0.2%) with NTRK fusions (NTRK1-EPS15 (epidermal growth factor receptor pathway substrate 15) and NTRK1-SQSTM1 (sequestosome 1)). Positive RNA-NGS was confirmed by FISH, and NTRK-positive patients benefited from targeted treatment. All patients with direct FISH testing were negative. RNA-NGS- or FISH-positive results were mutually exclusive with alterations in EGFR (epidermal growth factor receptor), ALK (anaplastic lymphoma kinase), ROS1 (ROS proto-oncogene 1), BRAF (proto-oncogene B-Raf), RET (rearranged during transfection) or KRAS (kirsten rat sarcoma viral oncogene). Excluding patients with one of these alterations raised the prevalence of NTRK-fusion positivity among panTrk-(tropomyosin receptor kinase-) IHC positive samples to 30.5%. (4) Conclusions: NTRK fusion-positive lung cancers are exceedingly rare and account for less than 1% of patients in unselected all-comer populations. Both RNA-NGS and FISH are suitable to determine clinically relevant NTRK fusions in a real-world setting. We suggest including panTrk-IHC in a diagnostic workflow followed by RNA-NGS. Excluding patients with concurrent molecular alterations to EGFR/ALK/ROS1/BRAF/RET or KRAS might narrow the target population
Top-level MET gene copy number gain defines a subtype of poorly differentiated pulmonary adenocarcinomas with poor prognosis
Fibroblast growth factor receptor 1 gene amplification and protein expression in human lung cancer
Abstract Background Targeting fibroblast growth factor receptor 1 (FGFR1) is a potential treatment for squamous cell lung cancer (SQCLC). So far, treatment decision in clinical studies is based on gene amplification. However, only a minority of patients have shown durable response. Furthermore, former studies have revealed contrasting results regarding the impact of FGFR1 amplification and expression on patient's prognosis. Aims Here, we analyzed prevalence and correlation of FGFR1 gene amplification and protein expression in human lung cancer and their impact on overall survival. Materials \u0026 Methods FGFR1 gene amplification and protein expression were analyzed by fluorescence in situ hybridization and immunohistochemistry (IHC) in 208 SQCLC and 45 small cell lung cancers (SCLC). Furthermore, FGFR1 protein expression was analyzed in 121 pulmonary adenocarcinomas (ACs). Amplification and expression were correlated to each other, clinicopathological characteristics, and overall survival. Results FGFR1 was amplified in 23% of SQCLC and 8% of SCLC. Amplification was correlated to males (P = .027) but not to overall survival. Specificity of immunostaining was verified by cellular CRISPR/Cas9 FGFR1 knockout. FGFR1 was strongly expressed in 9% of SQCLC, 35% of AC, and 4% of SCLC. Expression was correlated to females (P = .0187) and to the absence of lymph node metastasis in SQCLC (P = .018) with no significant correlation to overall survival. Interestingly, no significant correlation between amplification and expression was detected. Discussion FGFR1 gene amplification does not seem to correlate to protein expression. Conclusion We believe that patient selection for FGFR1 inhibitors in clinical studies should be reconsidered. Neither FGFR1 amplification nor expression influences patient's prognosis.Fibroblast growh factor receptor 1 (FGFR1) is considered a potential molecular target in squamous cell lung cancer. However, prevalence of gene amplification as well as correlation to protein overexpression have to be established. Our work has evaluated prevalence and correlation of FGFR1 gene amplification and protein expression in 421 lung cancer patient samples. imageDeutsche Krebshilfe FoundationElse‐Kroener‐Fresenius FoundationUniversity Medical Center GoettingenChinese Scholarship CouncilOpen-Access-Publikationsfonds 202
Top-level MET gene copy number gain defines a subtype of poorly differentiated pulmonary adenocarcinomas with poor prognosis
FGFR3 mRNA overexpression defines a subset of oligometastatic colorectal cancers with worse prognosis
Metastatic colorectal cancer (CRC) remains a leading cause of cancer related deaths. Patients with oligometastatic liver disease represent a clinical subgroup with heterogeneous course. Until now, biomarkers to characterize outcome and therapeutic options have not been fully established
