432 research outputs found
Real time vibronic coupling dynamics in organic conjugated systems
In this work we show the potentialities of applying impulsive coherent vibrational spectroscopy to conjugated systems relevant for applications. We studied films of sexithiophene, a candidate for large area molecular electronics, poly-phenylene vinylene, a prototype electroluminescent material, and polydiacetylene, very promising for applications in photonic devices. These experiments demonstrate the possibility of studying coherent molecular dynamics in organic systems with extremely high time resolution
Charge carrier generation in a conjugated polymer studied via ultrafast pump-push-probe experiments
Conjugated polymers find rapidly growing application in electroluminescent displays and are extensively studied for use in photovoltaics and laser diodes. For a wide range of conjugated materials ultrafast pump-probe experiments have revealed the excited state dynamics of singlet and triplet excitons as well as positively and negatively charged polarons. Charge carriers play a key role in all the above mentioned applications. However, there is yet no clear picture of the mechanisms which lead to their generation. Photocurrent excitation cross-correlation measurement on methyl-substituted ladder-type poly(para)phenyl (m-LPPP), a prototypical conjugated polymer with very appealing properties for the above mentioned applications, have suggested that charge carrier generation occurs preferentially from higher lying states during energy migration. Our approach to examining this mechanism consists of an innovative modification of the ultrafast time-resolved pump-probe technique
Fast Ultrahigh-Density Writing of Low Conductivity Patterns on Semiconducting Polymers
The exceptional interest in improving the limitations of data storage,
molecular electronics, and optoelectronics has promoted the development of an
ever increasing number of techniques used to pattern polymers at micro and
nanoscale. Most of them rely on Atomic Force Microscopy to thermally or
electrostatically induce mass transport, thereby creating topographic features.
Here we show that the mechanical interaction of the tip of the Atomic Force
Microscope with the surface of a class of conjugate polymers produces a local
increase of molecular disorder, inducing a localized lowering of the
semiconductor conductivity, not associated to detectable modifications in the
surface topography. This phenomenon allows for the swift production of low
conductivity patterns on the polymer surface at an unprecedented speed
exceeding 20 ; paths have a resolution in the order of the tip
size (20 nm) and are detected by a Conducting-Atomic Force Microscopy tip in
the conductivity maps.Comment: 22 pages, 6 figures, published in Nature Communications as Article (8
pages
Nanoparticles: A Challenging Vehicle for Neural Stimulation
Neurostimulation represents a powerful and well-established tool for the treatment of several diseases affecting the central nervous system. Although, effective in reducing the symptoms or the progression of brain disorders, the poor accessibility of the deepest areas of the brain currently hampers the possibility of a more specific and controlled therapeutic stimulation, depending on invasive surgical approaches and long-term stability, and biocompatibility issues. The massive research of the last decades on nanomaterials and nanoscale devices favored the development of new tools to address the limitations of the available neurostimulation approaches. This mini-review focuses on the employment of nanoparticles for the modulation of the electrophysiological activity of neuronal networks and the related transduction mechanisms underlying the nanostructure-neuron interfaces
Control of the chemiluminescence spectrum with porous Bragg mirrors
Tunable, battery free light emission is demonstrated in a solid state device
that is compatible with lab on a chip technology and easily fabricated via
solution processing techniques. A porous one dimensional (1D) photonic crystal
(also called Bragg stack or mirror) is infiltrated by chemiluminescence
rubrene-based reagents. The Bragg mirror has been designed to have the photonic
band gap overlapping with the emission spectrum of rubrene. The
chemiluminescence reaction occurs in the intrapores of the photonic crystal and
the emission spectrum of the dye is modulated according to the photonic band
gap position. This is a compact, powerless emitting source that can be
exploited in disposable photonic chip for sensing and point of care
applications.Comment: 8 pages, 3 figure
Molecular-Level Switching of Polymer/Nanocrystal Non-Covalent Interactions and Application in Hybrid Solar Cells
Hy brid composites obtained upon blending conjugated polymers and colloidal
inorganic semiconductor nanocrystals are regarded as attractive photo-active
materials for optoelectronic applications. Here we demonstrate that tailoring
nanocrystal surface chemistry permits to exert control on non-covalent bonding
and electronic interactions between organic and inorganic components. The
pendant moieties of organic ligands at the nanocrystal surface do not merely
confer colloidal stability while hindering charge separation and transport, but
drastically impact morphology of hybrid composites during formation from blend
solutions. The relevance of our approach to photovoltaic applications is
demonstrated for composites based on poly(3-hexylthiophene) and Pbs
nanocrystals, considered as inadequate before the submission of this
manuscript, which enable the fabrication of hybrid solar cells displaying a
power conversion efficiency that reaches 3 %. Upon (quasi)steady-state and
time-resolved analisys of the photo-induced processes in the nanocomposites and
their organic and inorganic components, we ascertained that electron transfer
occurs at the hybrid interface yielding long-lived separated charge carriers,
whereas interfacial hole transfer appears slow. Here we provide a reliable
alternative aiming at gaining control over macroscopic optoelectronic
properties of polymer/nanocrystal composites by acting at the molecular-level
via ligands' pendant moieties, thus opening new possibilities towards efficient
solution-processed hybrid solar cells
Plasmonics in heavily-doped semiconductor nanocrystals
Heavily-doped semiconductor nanocrystals characterized by a tunable plasmonic
band have been gaining increasing attention recently. Herein, we introduce this
type of materials focusing on their structural and photo physical properties.
Beside their continuous-wave plasmonic response, depicted both theoretically
and experimentally, we also review recent results on their transient, ultrafast
response. This was successfully interpreted by adapting models of the ultrafast
response of gold nanoparticles.Comment: 20 pages review paper, 15 figure
Optical NP problem solver on laser-written waveguide platform
Cognitive photonic networks are researched to efficiently solve computationally hard problems. Flexible fabrication techniques for the implementation of such networks into compact and scalable chips are desirable for the study of new optical computing schemes and algorithm optimization. Here we demonstrate a femtosecond laser-written optical oracle based on cascaded directional couplers in glass, for the solution of the Hamiltonian path problem. By interrogating the integrated photonic chip with ultrashort laser pulses, we were able to distinguish the different paths traveled by light pulses, and thus infer the existence or the absence of the Hamiltonian path in the network by using an optical correlator. This work proves that graph theory problems may be easily implemented in integrated photonic networks, down scaling the net size and speeding up execution times
- …
