391 research outputs found

    Mathematical Modelling of Tyndall Star Initiation

    Full text link
    The superheating that usually occurs when a solid is melted by volumetric heating can produce irregular solid-liquid interfaces. Such interfaces can be visualised in ice, where they are sometimes known as Tyndall stars. This paper describes some of the experimental observations of Tyndall stars and a mathematical model for the early stages of their evolution. The modelling is complicated by the strong crystalline anisotropy, which results in an anisotropic kinetic undercooling at the interface; it leads to an interesting class of free boundary problems that treat the melt region as infinitesimally thin

    Wellposedness of an elliptic-dispersive coupled system for MEMS

    Full text link
    In this work, we study the local wellposedness of the solution to a nonlinear elliptic-dispersive coupled system which serves as a model for a Micro-Electro-Mechanical System (MEMS). A simple electrostatically actuated MEMS capacitor device consists of two parallel plates separated by a gas-filled thin gap. The nonlinear elliptic-dispersive coupled system modelling the device combines a linear elliptic equation for the gas pressure with a semilinear dispersive equation for the gap width. We show the local-in-time existence of strict solutions for the system, by combining elliptic regularity results for the elliptic equation, Lipschitz continuous dependence of its solution on that of the dispersive equation, and then local-in-time existence for a resulting abstract dispersive problem. Semigroup approaches are key to solve the abstract dispersive problem.Comment: 27 page

    Predictions of the causal entropic principle for environmental conditions of the universe

    Full text link
    The causal entropic principle has been proposed as a superior alternative to the anthropic principle for understanding the magnitude of the cosmological constant. In this approach, the probability to create observers is assumed to be proportional to the entropy production \Delta S in a maximal causally connected region -- the causal diamond. We improve on the original treatment by better quantifying the entropy production due to stars, using an analytic model for the star formation history which accurately accounts for changes in cosmological parameters. We calculate the dependence of \Delta S on the density contrast Q=\delta\rho/\rho, and find that our universe is much closer to the most probable value of Q than in the usual anthropic approach and that probabilities are relatively weakly dependent on this amplitude. In addition, we make first estimates of the dependence of \Delta S on the baryon fraction and overall matter abundance. Finally, we also explore the possibility that decays of dark matter, suggested by various observed gamma ray excesses, might produce a comparable amount of entropy to stars.Comment: RevTeX4, 13pp, 10 figures; v2. clarified introduction, added ref

    On the quenching behaviour of a semilinear wave equation modelling MEMS technology

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continuous Dynamical Systems - Series A following peer review. The definitive publisher-authenticated version 2015, 35(3), pp. 1009-1037 is available online at: http://dx.doi.org/10.3934/dcds.2015.35.100

    The Clustering of Massive Halos

    Get PDF
    The clustering properties of dark matter halos are a firm prediction of modern theories of structure formation. We use two large volume, high-resolution N-body simulations to study how the correlation function of massive dark matter halos depends upon their mass and formation history. We find that halos with the lowest concentrations are presently more clustered than those of higher concentration, the size of the effect increasing with halo mass; this agrees with trends found in studies of lower mass halos. The clustering dependence on other characterizations of the full mass accretion history appears weaker than the effect with concentration. Using the integrated correlation function, marked correlation functions, and a power-law fit to the correlation function, we find evidence that halos which have recently undergone a major merger or a large mass gain have slightly enhanced clustering relative to a randomly chosen population with the same mass distribution.Comment: 10 pages, 8 figures; text improved, references and one figure added; accepted for publication in Ap

    The Robustness of Dark Matter Density Profiles in Dissipationless Mergers

    Full text link
    We present a comprehensive series of dissipationless N-body simulations to investigate the evolution of density distribution in equal-mass mergers between dark matter (DM) halos and multicomponent galaxies. The DM halo models are constructed with various asymptotic power-law indices ranging from steep cusps to core-like profiles and the structural properties of the galaxy models are motivated by the LCDM paradigm of structure formation. The adopted force resolution allows robust density profile estimates in the inner ~1% of the virial radii of the simulated systems. We demonstrate that the central slopes and overall shapes of the remnant density profiles are virtually identical to those of the initial systems suggesting that the remnants retain a remarkable memory of the density structure of their progenitors, despite the relaxation that accompanies merger activity. We also find that halo concentrations remain approximately constant through hierarchical merging involving identical systems and show that remnants contain significant fractions of their bound mass well beyond their formal virial radii. These conclusions hold for a wide variety of initial asymptotic density slopes, orbital energies, and encounter configurations, including sequences of consecutive merger events, simultaneous mergers of severals ystems, and mergers of halos with embedded cold baryonic components in the form of disks, spheroids, or both. As an immediate consequence, the net effect of gas cooling, which contracts and steepens the inner density profiles of DM halos, should be preserved through a period of dissipationless major merging. Our results imply that the characteristic universal shape of DM density profiles may be set early in the evolution of halos.Comment: Accepted for publication in ApJ, 20 pages, 10 figures, LaTeX (uses emulateapj.cls

    Close Pairs as Proxies for Galaxy Cluster Mergers

    Full text link
    Galaxy cluster merger statistics are an important component in understanding the formation of large-scale structure. Unfortunately, it is difficult to study merger properties and evolution directly because the identification of cluster mergers in observations is problematic. We use large N-body simulations to study the statistical properties of massive halo mergers, specifically investigating the utility of close halo pairs as proxies for mergers. We examine the relationship between pairs and mergers for a wide range of merger timescales, halo masses, and redshifts (0<z<1). We also quantify the utility of pairs in measuring merger bias. While pairs at very small separations will reliably merge, these constitute a small fraction of the total merger population. Thus, pairs do not provide a reliable direct proxy to the total merger population. We do find an intriguing universality in the relation between close pairs and mergers, which in principle could allow for an estimate of the statistical merger rate from the pair fraction within a scaled separation, but including the effects of redshift space distortions strongly degrades this relation. We find similar behavior for galaxy-mass halos, making our results applicable to field galaxy mergers at high redshift. We investigate how the halo merger rate can be statistically described by the halo mass function via the merger kernel (coagulation), finding an interesting environmental dependence of merging: halos within the mass resolution of our simulations merge less efficiently in overdense environments. Specifically, halo pairs with separations less than a few Mpc/h are more likely to merge in underdense environments; at larger separations, pairs are more likely to merge in overdense environments.Comment: 12 pages, 9 figures; Accepted for publication in ApJ. Significant additions to text and two figures changed. Added new findings on the universality of pair mergers and added analysis of the effect of FoF linking length on halo merger

    Cellular-level versus receptor-level response threshold hierarchies in T-Cell activation

    Get PDF
    Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles

    Halo Substructure and the Power Spectrum

    Get PDF
    In this proceeding, we present the results of a semi-analytic study of CDM substructure as a function of the primordial power spectrum. We apply our method to several tilted models in the LCDM framework with n=0.85-1.1, sigma_8=0.65-1.2 when COBE normalized. We also study a more extreme, warm dark matter-like spectrum that is sharply truncated below a scale of 10^10 h^-1 Msun. We show that the mass fraction of halo substructure is not a strong function of spectral slope, so it likely will be difficult to constrain tilt using flux ratios of gravitationally lensed quasars. On the positive side, all of our CDM-type models yield projected mass fractions in good agreement with strong lensing estimates: f \sim 1.5% at M \sim 10^8 Msun. The truncated model produces a significantly smaller fraction, f \lsim 0.3%, suggesting that warm dark matter-like spectra may be distinguished from CDM spectra using lensing. We also discuss the issue of dwarf satellite abundances, with emphasis on the cosmological dependence of the map between the observed central velocity dispersion of Milky Way satellites and the maximum circular velocities of their host halos. In agreement with earlier work, we find that standard LCDM over-predicts the estimated count of Milky Way satellites at fixed Vmax by an order of magnitude, but tilted models do better because subhalos are less concentrated. Interestingly, under the assumption that dwarfs have isotropic velocity dispersion tensors, models with significantly tilted spectra (n \lsim 0.85, sigma_8 \lsim 0.7) may under-predict the number of large Milky Way satellites with Vmax \gsim 40 km/s.Comment: 5 pages, 2 figures. Poster contribution to the 13th Annual Astrophysics Conference in Maryland, The Emergence of Cosmic Structur
    corecore