35,901 research outputs found
Video-Based Information Systems in Academic Library Media Centers
published or submitted for publicatio
Future Summary
We are emerging from a period of consolidation in particle physics. Its
great, historic achievement was to establish the Theory of Matter. This Theory
will serve as our description of ordinary matter under ordinary conditions --
allowing for an extremely liberal definition of "ordinary -- for the
foreseeable future. Yet there are many indications, ranging from the numerical
to the semi-mystical, that a new fertile period lies before us. We will
discover compelling evidence for the unification of fundamental forces and for
new quantum dimensions (low-energy supersymmetry). We will identify new forms
of matter, which dominate the mass density of the Universe. We will achieve
much better fundamental understanding of the behavior of matter in extreme
astrophysical and cosmological environments. Lying beyond these expectations,
we can identify deep questions that seem to call for ideas outside our present
grasp. And there's still plenty of room for surprises.Comment: 25 pages, 13 EPS figures, LaTeX with BoxedEPS macros. Closing talk
delivered at the LEPfest, CERN, October 11, 2000. Email correspondence to
[email protected]
The \u3cem\u3emir-51\u3c/em\u3e Family of MicroRNAs Functions in Diverse Regulatory Pathways in \u3cem\u3eCaenorhbditis elegans\u3c/em\u3e
The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans
The Background Field Method as a Canonical Transformation
We construct explicitly the canonical transformation that controls the full
dependence (local and non-local) of the vertex functional of a Yang-Mills
theory on a background field. After showing that the canonical transformation
found is nothing but a direct field-theoretic generalization of the Lie
transform of classical analytical mechanics, we comment on a number of possible
applications, and in particular the non perturbative implementation of the
background field method on the lattice, the background field formulation of the
two particle irreducible formalism, and, finally, the formulation of the
Schwinger-Dyson series in the presence of topologically non-trivial
configurations.Comment: 11 pages, REVTeX. References added, some explanations extended. Final
version to appear in the journa
Low speed wind tunnel investigation of the aerodynamic and acoustic performance of several sonic inlet takeoff and approach geometries
A series of tests was conducted to determine the aerodynamic and acoustic performance of several sonic inlet takeoff and approach geometries. The effects of inlet lip shape and diffuser length were also investigated. The tests were conducted in a low-speed wind tunnel at free-stream velocities of 0 and 45 meters per second. Inlet incidence angle was varied from 0 deg to 50 deg. The inlets were sized to fit a 13.97-centimeter-diameter fan. In terms of the highest level of inlet total pressure recovery for a given amount of noise suppression, a cylindrical centerbody takeoff geometry and a bulb-shaped centerbody approach geometry provided the best results over all conditions of free-stream velocity and incidence angle. Increasing inlet lip contraction ratio extended the maximum incidence angle for attached lip flow, while increasing inlet diffuser length resulted in a higher total pressure recovery for a given amount of noise suppression
Report on the first binary black hole inspiral search in LIGO data
The LIGO Scientific Collaboration is currently engaged in the first search
for binary black hole inspiral signals in real data. We are using the data from
the second LIGO science run and we focus on inspiral signals coming from binary
systems with component masses between 3 and 20 solar masses. We describe the
analysis methods used and report on preliminary estimates for the sensitivities
of the LIGO instruments during the second science run.Comment: 10 pages, 2 figures. Added references for section 2, corrected figure
1. To appear in CQG, in a special issue on the proceedings of the 9th Annual
Gravitational Wave Data Analysis Workshop (GWDAW), Annecy, France, Dec. 200
The structure of line-driven winds
Following procedures pioneered by Castor, Abbott & Klein (1975, [CAK]),
spherically-symmetric supersonic winds for O stars are computed for matching to
plane-parallel moving reversing layers (RL's) from Paper I (Lucy 2007). In
contrast to a CAK wind, each of these solutions is singularity-free, thus
allowing its mass-loss rate to be fixed by the regularity condition at the
sonic point within the RL. Moreover, information propagation in these winds by
radiative-acoustic waves is everywhere outwardly-directed, justifying the
implicit assumption in Paper I that transonic flows are unaffected by
inwardly-directed wave motions.Comment: Accepted by A&A; 7 pages, 1 table, 4 figure
- …
