6,263 research outputs found

    Data Analytics in Higher Education: Key Concerns and Open Questions

    Get PDF
    “Big Data” and data analytics affect all of us. Data collection, analysis, and use on a large scale is an important and growing part of commerce, governance, communication, law enforcement, security, finance, medicine, and research. And the theme of this symposium, “Individual and Informational Privacy in the Age of Big Data,” is expansive; we could have long and fruitful discussions about practices, laws, and concerns in any of these domains. But a big part of the audience for this symposium is students and faculty in higher education institutions (HEIs), and the subject of this paper is data analytics in our own backyards. Higher education learning analytics (LA) is something that most of us involved in this symposium are familiar with. Students have encountered LA in their courses, in their interactions with their law school or with their undergraduate institutions, instructors use systems that collect information about their students, and administrators use information to help understand and steer their institutions. More importantly, though, data analytics in higher education is something that those of us participating in the symposium can actually control. Students can put pressure on administrators, and faculty often participate in university governance. Moreover, the systems in place in HEIs are more easily comprehensible to many of us because we work with them on a day-to-day basis. Students use systems as part of their course work, in their residences, in their libraries, and elsewhere. Faculty deploy course management systems (CMS) such as Desire2Learn, Moodle, Blackboard, and Canvas to structure their courses, and administrators use information gleaned from analytics systems to make operational decisions. If we (the participants in the symposium) indeed care about Individual and Informational Privacy in the Age of Big Data, the topic of this paper is a pretty good place to hone our thinking and put into practice our ideas

    Student Privacy in Learning Analytics: An Information Ethics Perspective

    Get PDF
    In recent years, educational institutions have started using the tools of commercial data analytics in higher education. By gathering information about students as they navigate campus information systems, learning analytics “uses analytic techniques to help target instructional, curricular, and support resources” to examine student learning behaviors and change students’ learning environments. As a result, the information educators and educational institutions have at their disposal is no longer demarcated by course content and assessments, and old boundaries between information used for assessment and information about how students live and work are blurring. Our goal in this paper is to provide a systematic discussion of the ways in which privacy and learning analytics conflict and to provide a framework for understanding those conflicts. We argue that there are five crucial issues about student privacy that we must address in order to ensure that whatever the laudable goals and gains of learning analytics, they are commensurate with respecting students’ privacy and associated rights, including (but not limited to) autonomy interests. First, we argue that we must distinguish among different entities with respect to whom students have, or lack, privacy. Second, we argue that we need clear criteria for what information may justifiably be collected in the name of learning analytics. Third, we need to address whether purported consequences of learning analytics (e.g., better learning outcomes) are justified and what the distributions of those consequences are. Fourth, we argue that regardless of how robust the benefits of learning analytics turn out to be, students have important autonomy interests in how information about them is collected. Finally, we argue that it is an open question whether the goods that justify higher education are advanced by learning analytics, or whether collection of information actually runs counter to those goods

    Learning analytics and higher education: a proposed model for establishing informed consent mechanisms to promote student privacy and autonomy

    Get PDF
    By tracking, aggregating, and analyzing student profiles along with students’ digital and analog behaviors captured in information systems, universities are beginning to open the black box of education using learning analytics technologies. However, the increase in and usage of sensitive and personal student data present unique privacy concerns. I argue that privacy-as-control of personal information is autonomy promoting, and that students should be informed about these information flows and to what ends their institution is using them. Informed consent is one mechanism by which to accomplish these goals, but Big Data practices challenge the efficacy of this strategy. To ensure the usefulness of informed consent, I argue for the development of Platform for Privacy Preferences (P3P) technology and assert that privacy dashboards will enable student control and consent mechanisms, while providing an opportunity for institutions to justify their practices according to existing norms and values

    Advising the whole student: eAdvising analytics and the contextual suppression of advisor values

    Get PDF
    Institutions are applying methods and practices from data analytics under the umbrella term of “learning analytics” to inform instruction, library practices, and institutional research, among other things. This study reports findings from interviews with professional advisors at a public higher education institution. It reports their perspective on their institution’s recent adoption of eAdvising technologies with prescriptive and predictive advising affordances. The findings detail why advisors rejected the tools due to usability concerns, moral discomfort, and a belief that using predictive measures violated a professional ethical principle to develop a comprehensive understanding of their advisees. The discussion of these findings contributes to an emerging branch of educational data mining and learning analytics research focused on social and ethical implications. Specifically, it highlights the consequential effects on higher education professional communities (or “micro contexts”) due to the ascendancy of learning analytics and data-driven ideologies

    Capturing the "Whole Tale" of Computational Research: Reproducibility in Computing Environments

    Full text link
    We present an overview of the recently funded "Merging Science and Cyberinfrastructure Pathways: The Whole Tale" project (NSF award #1541450). Our approach has two nested goals: 1) deliver an environment that enables researchers to create a complete narrative of the research process including exposure of the data-to-publication lifecycle, and 2) systematically and persistently link research publications to their associated digital scholarly objects such as the data, code, and workflows. To enable this, Whole Tale will create an environment where researchers can collaborate on data, workspaces, and workflows and then publish them for future adoption or modification. Published data and applications will be consumed either directly by users using the Whole Tale environment or can be integrated into existing or future domain Science Gateways

    Using the Social Media to Reinforce Binge Drinking Normative Behaviors: A Comparison of American and Australian College Students

    Get PDF
    The central purpose of this study shows how the overestimation of the perceived normative behavior of binge drinking is the focused behavior reinforced by social networking sites (SNS), which the modern college students have incorporated into socialization. With a cross-cultural comparison, this study shows how this phenomenon of normative behavior of binge-drinking, social drinking, and non-drinking varies between undergraduates from America and Australia. The online surveying tool, Qualtrics, was used to gather information using the Alcohol Use Disorders Identification Test (AUDIT) and questions from the Pew Research center focusing on the social media. There were 119 combined undergraduate participants surveyed, from which the resulting data were used to correlate responses with the AUDIT test as well as cross culturally compare results. The results were valid with each schools results coinciding with AUDIT binge drinking test. The normative behaviors were also analyzed showing that there are different social media behaviors being in the two countries

    Kyle Jones, Trumpet: Junior Trumpet Recital

    Get PDF

    An inventory and mapping of cliffs within the South Cumberland Plateau region of Tennessee

    Get PDF
    The high concentration of cliffs that permeate Tennessee’s South Cumberland Plateau (SCP) significantly influence the development, economy, and ecology of the region, yet little effort has been made to quantify these geophysical features. This study examined the use of LiDAR-derived digital elevation models (DEMs) to (1) create an exhaustive dataset of cliffs throughout a two-county study area within the SCP region and (2) better understand the implications of this quantification on conservation and rock climbing within the region. An impressive 428 km of total cliff line was modeled. Cliffs were GPS verified to an average error of ±13.9 m and a length RMSE = 91 m. The study determined 36% of cliffs in the study area lie on public lands, and 7% of cliffs are currently accessible for rock climbing. Results from this study clarify and reinforce the ecological and recreational significance of cliffs within the SCP region
    • …
    corecore