5,346 research outputs found
Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate
We investigate vortex shedding from a moving penetrable obstacle in a highly
oblate Bose-Einstein condensate. The penetrable obstacle is formed by a
repulsive Gaussian laser beam that has the potential barrier height lower than
the chemical potential of the condensate. The moving obstacle periodically
generates vortex dipoles and the vortex shedding frequency linearly
increases with the obstacle velocity as , where is a
critical velocity. Based on periodic shedding behavior, we demonstrate
deterministic generation of a single vortex dipole by applying a short linear
sweep of a laser beam. This method will allow further controlled vortex
experiments such as dipole-dipole collisions.Comment: 6 pages, 7 figure
Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate
We present an experimental study on the interaction and dynamics of
half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein
condensate. By exploiting the orbit motion of a vortex dipole in a trapped
condensate, we perform a collision experiment of two HQV pairs, and observe
that the scattering motions of the HQVs is consistent with the short-range
vortex interaction that arises from nonsingular magnetized vortex cores. We
also investigate the relaxation dynamics of turbulent condensates containing
many HQVs, and demonstrate that spin wave excitations are generated by the
collisional motions of the HQVs. The short-range vortex interaction and the
HQV-magnon coupling represent two characteristics of the HQV dynamics in the
spinor superfluid.Comment: 7 pages, 6 figure
Observation of Topologically Stable 2D Skyrmions in an Antiferromagnetic Spinor Bose-Einstein Condensate
We present the creation and time evolution of two-dimensional Skyrmion
excitations in an antiferromagnetic spinor Bose-Einstein condensate. Using a
spin rotation method, the Skyrmion spin textures were imprinted on a sodium
condensate in a polar phase, where the two-dimensional Skyrmion is
topologically protected. The Skyrmion was observed to be stable on a short time
scale of a few tens of ms but to have dynamical instability to deform its shape
and eventually decay to a uniform spin texture. The deformed spin textures
reveal that the decay dynamics involves breaking the polar phase inside the
condensate without having topological charge density flow through the boundary
of the finite-sized sample. We discuss the possible formation of half-quantum
vortices in the deformation process.Comment: 5 pages, 5 figure
Critical Velocity for Vortex Shedding in a Bose-Einstein Condensate
We present measurements of the critical velocity for vortex shedding in a
highly oblate Bose-Einstein condensate with a moving repulsive Gaussian laser
beam. As a function of the barrier height , the critical velocity
shows a dip structure having a minimum at , where is
the chemical potential of the condensate. At fixed , we
observe that the ratio of to the speed of sound monotonically
increases for decreasing , where is the beam width and
is the condensate healing length. The measured upper bound for
is about 0.4, which is in good agreement with theoretical predictions for a
two-dimensional superflow past a circular cylinder. We explain our results with
the density reduction effect of the soft boundary of the Gaussian obstacle,
based on the local Landau criterion for superfluidity.Comment: 5 pages, 4 figure
Role of thermal friction in relaxation of turbulent Bose-Einstein condensates
In recent experiments, the relaxation dynamics of highly oblate, turbulent
Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay
rates in various sample conditions [Phys. Rev. A , 063627 (2014)] and,
separately, the thermal friction coefficient for vortex motion was
measured from the long-time evolution of a corotating vortex pair in a BEC
[Phys. Rev. A , 051601(R) (2015)]. We present a comparative analysis of
the experimental results, and find that the vortex decay rate is
almost linearly proportional to . We perform numerical simulations of
the time evolution of a turbulent BEC using a point-vortex model equipped with
longitudinal friction and vortex-antivortex pair annihilation, and observe that
the linear dependence of on is quantitatively accounted for
in the dissipative point-vortex model. The numerical simulations reveal that
thermal friction in the experiment was too strong to allow for the emergence of
a vortex-clustered state out of decaying turbulence.Comment: 7 pages, 5 figure
Transcriptional Regulator TonEBP Mediates Oxidative Damages in Ischemic Kidney Injury
TonEBP (tonicity-responsive enhancer binding protein) is a transcriptional regulator whose expression is elevated in response to various forms of stress including hyperglycemia, inflammation, and hypoxia. Here we investigated the role of TonEBP in acute kidney injury (AKI) using a line of TonEBP haplo-deficient mice subjected to bilateral renal ischemia followed by reperfusion (I/R). In the TonEBP haplo-deficient animals, induction of TonEBP, oxidative stress, inflammation, cell death, and functional injury in the kidney in response to I/R were all reduced. Analyses of renal transcriptome revealed that genes in several cellular pathways including peroxisome and mitochondrial inner membrane were suppressed in response to I/R, and the suppression was relieved in the TonEBP deficiency. Production of reactive oxygen species (ROS) and the cellular injury was reproduced in a renal epithelial cell line in response to hypoxia, ATP depletion, or hydrogen peroxide. The knockdown of TonEBP reduced ROS production and cellular injury in correlation with increased expression of the suppressed genes. The cellular injury was also blocked by inhibitors of necrosis. These results demonstrate that ischemic insult suppresses many genes involved in cellular metabolism leading to local oxidative stress by way of TonEBP induction. Thus, TonEBP is a promising target to prevent AKI
Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates
We investigate thermal relaxation of superfluid turbulence in a highly oblate
Bose-Einstein condensate. We generate turbulent flow in the condensate by
sweeping the center region of the condensate with a repulsive optical
potential. The turbulent condensate shows a spatially disordered distribution
of quantized vortices and the vortex number of the condensate exhibits
nonexponential decay behavior which we attribute to the vortex pair
annihilation. The vortex-antivortex collisions in the condensate are identified
with crescent-shaped, coalesced vortex cores. We observe that the
nonexponential decay of the vortex number is quantitatively well described by a
rate equation consisting of one-body and two-body decay terms. In our
measurement, we find that the local two-body decay rate is closely proportional
to , where is the temperature and is the chemical potential.Comment: 7 pages, 9 figure
Misclassified type 1 AGNs in the local universe
We search for misclassified type 1 AGNs among type 2 AGNs identified with
emission line flux ratios, and investigate the properties of the sample. Using
4\,113 local type 2 AGNs at selected from Sloan Digital Sky
Survey Data Release 7, we detected a broad component of the \Ha\ line with a
Full-Width at Half-Maximum (FWHM) ranging from 1\,700 to 19\,090 \kms\ for 142
objects, based on the spectral decomposition and visual inspection. The
fraction of the misclassified type 1 AGNs among type 2 AGN sample is
3.5%, implying that a large number of missing type 1 AGN population may
exist. The misclassified type 1 AGNs have relatively low luminosity with a mean
broad \Ha\ luminosity, log L \ergs, while black hole
mass of the sample is comparable to that of the local black hole population,
with a mean black hole mass, log M M. The
mean Eddington ratio of the sample is log L/L =
, indicating that black hole activity is relatively weak, hence,
AGN continuum is too weak to change the host galaxy color. We find that the
\OIII\ lines show significant velocity offsets, presumably due to outflows in
the narrow-line region, while the velocity offset of the narrow component of
the \Ha\ line is not prominent, consistent with the ionized gas kinematics of
general type 1 AGN population.Comment: 12 pages, 8 figures, JKAS in pres
- …
