1 research outputs found
Spoof detection using time-delay shallow neural network and feature switching
Detecting spoofed utterances is a fundamental problem in voice-based
biometrics. Spoofing can be performed either by logical accesses like speech
synthesis, voice conversion or by physical accesses such as replaying the
pre-recorded utterance. Inspired by the state-of-the-art \emph{x}-vector based
speaker verification approach, this paper proposes a time-delay shallow neural
network (TD-SNN) for spoof detection for both logical and physical access. The
novelty of the proposed TD-SNN system vis-a-vis conventional DNN systems is
that it can handle variable length utterances during testing. Performance of
the proposed TD-SNN systems and the baseline Gaussian mixture models (GMMs) is
analyzed on the ASV-spoof-2019 dataset. The performance of the systems is
measured in terms of the minimum normalized tandem detection cost function
(min-t-DCF). When studied with individual features, the TD-SNN system
consistently outperforms the GMM system for physical access. For logical
access, GMM surpasses TD-SNN systems for certain individual features. When
combined with the decision-level feature switching (DLFS) paradigm, the best
TD-SNN system outperforms the best baseline GMM system on evaluation data with
a relative improvement of 48.03\% and 49.47\% for both logical and physical
access, respectively