13,918 research outputs found
Isolated and Dynamical Horizons and Their Applications
Over the past three decades, black holes have played an important role in quantum gravity, mathematical physics, numerical relativity and gravitational wave phenomenology. However, conceptual settings and mathematical models used to discuss them have varied considerably from one area to another. Over the last five years a new, quasi-local framework was introduced to analyze diverse facets of black holes in an unified manner. In this framework, evolving black holes are modeled by dynamical horizons and black holes in equilibrium by isolated horizons. We review basic properties of these horizons and summarize applications to mathematical physics, numerical relativity and quantum gravity. This paradigm has led to significant generalizations of several results in black hole physics. Specifically, it has introduced a more physical setting for black hole thermodynamics and for black hole entropy calculations in quantum gravity; suggested a phenomenological model for hairy black holes; provided novel techniques to extract physics from numerical simulations; and led to new laws governing the dynamics of black holes in exact general relativity
Uplink Linear Receivers for Multi-cell Multiuser MIMO with Pilot Contamination: Large System Analysis
Base stations with a large number of transmit antennas have the potential to
serve a large number of users at high rates. However, the receiver processing
in the uplink relies on channel estimates which are known to suffer from pilot
interference. In this work, making use of the similarity of the uplink received
signal in CDMA with that of a multi-cell multi-antenna system, we perform a
large system analysis when the receiver employs an MMSE filter with a pilot
contaminated estimate. We assume a Rayleigh fading channel with different
received powers from users. We find the asymptotic Signal to Interference plus
Noise Ratio (SINR) as the number of antennas and number of users per base
station grow large while maintaining a fixed ratio. Through the SINR expression
we explore the scenario where the number of users being served are comparable
to the number of antennas at the base station. The SINR explicitly captures the
effect of pilot contamination and is found to be the same as that employing a
matched filter with a pilot contaminated estimate. We also find the exact
expression for the interference suppression obtained using an MMSE filter which
is an important factor when there are significant number of users in the system
as compared to the number of antennas. In a typical set up, in terms of the
five percentile SINR, the MMSE filter is shown to provide significant gains
over matched filtering and is within 5 dB of MMSE filter with perfect channel
estimate. Simulation results for achievable rates are close to large system
limits for even a 10-antenna base station with 3 or more users per cell.Comment: Accepted for publication in IEEE Transactions on Wireless
Communication
Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination
Base stations with a large number of transmit antennas have the potential to
serve a large number of users simultaneously at higher rates. They also promise
a lower power consumption due to coherent combining at the receiver. However,
the receiver processing in the uplink relies on the channel estimates which are
known to suffer from pilot interference. In this work, we perform an uplink
large system analysis of multi-cell multi-antenna system when the receiver
employs a matched filtering with a pilot contaminated estimate. We find the
asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of
antennas and number of users per base station grow large while maintaining a
fixed ratio. To do this, we make use of the similarity of the uplink received
signal in a multi-antenna system to the representation of the received signal
in CDMA systems. The asymptotic SINR expression explicitly captures the effect
of pilot contamination and that of interference averaging. This also explains
the SINR performance of receiver processing schemes at different regimes such
as instances when the number of antennas are comparable to number of users as
well as when antennas exceed greatly the number of users. Finally, we also
propose that the adaptive MMSE symbol detection scheme, which does not require
the explicit channel knowledge, can be employed for cellular systems with large
number of antennas.Comment: 5 pages, 4 figure
The slicing dependence of non-spherically symmetric quasi-local horizons in Vaidya Spacetimes
It is well known that quasi-local black hole horizons depend on the choice of
a time coordinate in a spacetime. This has implications for notions such as the
surface of the black hole and also on quasi-local physical quantities such as
horizon measures of mass and angular momentum. In this paper, we compare
different horizons on non-spherically symmetric slicings of Vaidya spacetimes.
The spacetimes we investigate include both accreting and evaporating black
holes. For some simple choices of the Vaidya mass function function
corresponding to collapse of a hollow shell, we compare the area for the
numerically found axisymmetric trapping horizons with the area of the
spherically symmetric trapping horizon and event horizon. We find that as
expected, both the location and area are dependent on the choice of foliation.
However, the area variation is not large, of order for a slowly
evolving horizon with . We also calculate analytically the
difference in area between the spherically symmetric quasi-local horizon and
event horizon for a slowly accreting black hole. We find that the difference
can be many orders of magnitude larger than the Planck area for sufficiently
large black holes.Comment: 10 pages, 5 figures, corrected minor typo
Self-intersecting marginally outer trapped surfaces
We have shown previously that a merger of marginally outer trapped surfaces (MOTSs) occurs in a binary black hole merger and that there is a continuous sequence of MOTSs which connects the initial two black holes to the final one. In this paper, we confirm this scenario numerically and we detail further improvements in the numerical methods for locating MOTSs. With these improvements, we confirm the merger scenario and demonstrate the existence of self-intersecting MOTSs formed in the immediate aftermath of the merger. These results will allow us to track physical quantities across the non-linear merger process and to potentially infer properties of the merger from gravitational wave observations
- …