40 research outputs found
Subgraph Matching Kernels for Attributed Graphs
We propose graph kernels based on subgraph matchings, i.e.
structure-preserving bijections between subgraphs. While recently proposed
kernels based on common subgraphs (Wale et al., 2008; Shervashidze et al.,
2009) in general can not be applied to attributed graphs, our approach allows
to rate mappings of subgraphs by a flexible scoring scheme comparing vertex and
edge attributes by kernels. We show that subgraph matching kernels generalize
several known kernels. To compute the kernel we propose a graph-theoretical
algorithm inspired by a classical relation between common subgraphs of two
graphs and cliques in their product graph observed by Levi (1973). Encouraging
experimental results on a classification task of real-world graphs are
presented.Comment: Appears in Proceedings of the 29th International Conference on
Machine Learning (ICML 2012
Faster Algorithms for the Maximum Common Subtree Isomorphism Problem
The maximum common subtree isomorphism problem asks for the largest possible
isomorphism between subtrees of two given input trees. This problem is a
natural restriction of the maximum common subgraph problem, which is -hard in general graphs. Confining to trees renders polynomial time
algorithms possible and is of fundamental importance for approaches on more
general graph classes. Various variants of this problem in trees have been
intensively studied. We consider the general case, where trees are neither
rooted nor ordered and the isomorphism is maximum w.r.t. a weight function on
the mapped vertices and edges. For trees of order and maximum degree
our algorithm achieves a running time of by
exploiting the structure of the matching instances arising as subproblems. Thus
our algorithm outperforms the best previously known approaches. No faster
algorithm is possible for trees of bounded degree and for trees of unbounded
degree we show that a further reduction of the running time would directly
improve the best known approach to the assignment problem. Combining a
polynomial-delay algorithm for the enumeration of all maximum common subtree
isomorphisms with central ideas of our new algorithm leads to an improvement of
its running time from to ,
where is the order of the larger tree, is the number of different
solutions, and is the minimum of the maximum degrees of the input
trees. Our theoretical results are supplemented by an experimental evaluation
on synthetic and real-world instances
A Survey on Graph Kernels
Graph kernels have become an established and widely-used technique for
solving classification tasks on graphs. This survey gives a comprehensive
overview of techniques for kernel-based graph classification developed in the
past 15 years. We describe and categorize graph kernels based on properties
inherent to their design, such as the nature of their extracted graph features,
their method of computation and their applicability to problems in practice. In
an extensive experimental evaluation, we study the classification accuracy of a
large suite of graph kernels on established benchmarks as well as new datasets.
We compare the performance of popular kernels with several baseline methods and
study the effect of applying a Gaussian RBF kernel to the metric induced by a
graph kernel. In doing so, we find that simple baselines become competitive
after this transformation on some datasets. Moreover, we study the extent to
which existing graph kernels agree in their predictions (and prediction errors)
and obtain a data-driven categorization of kernels as result. Finally, based on
our experimental results, we derive a practitioner's guide to kernel-based
graph classification
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
The classical Weisfeiler-Leman algorithm aka color refinement is fundamental
for graph learning and central for successful graph kernels and graph neural
networks. Originally developed for graph isomorphism testing, the algorithm
iteratively refines vertex colors. On many datasets, the stable coloring is
reached after a few iterations and the optimal number of iterations for machine
learning tasks is typically even lower. This suggests that the colors diverge
too fast, defining a similarity that is too coarse. We generalize the concept
of color refinement and propose a framework for gradual neighborhood
refinement, which allows a slower convergence to the stable coloring and thus
provides a more fine-grained refinement hierarchy and vertex similarity. We
assign new colors by clustering vertex neighborhoods, replacing the original
injective color assignment function. Our approach is used to derive new
variants of existing graph kernels and to approximate the graph edit distance
via optimal assignments regarding vertex similarity. We show that in both
tasks, our method outperforms the original color refinement with only moderate
increase in running time advancing the state of the art
Designing q-Unique DNA Sequences with Integer Linear Programs and Euler Tours in De Bruijn Graphs
DNA nanoarchitechtures require carefully designed oligonucleotides with certain non-hybridization guarantees, which can be formalized as the q-uniqueness property on the sequence level. We study the optimization problem of finding a longest q-unique DNA sequence. We first present a convenient formulation as an integer linear program on the underlying De Bruijn graph that allows to flexibly incorporate a variety of constraints; solution times for practically relevant values of q are short. We then provide additional insights into the problem structure using the quotient graph of the De Bruijn graph with respect to the equivalence relation induced by reverse complementarity. Specifically, for odd q the quotient graph is Eulerian, so finding a longest q-unique sequence is equivalent to finding an Euler tour and solved in linear time with respect to the output string length. For even q, self-complementary edges complicate the problem, and the graph has to be Eulerized by deleting a minimum number of edges. Two sub-cases arise, for one of which we present a complete solution, while the other one remains open