381 research outputs found

    Chopper-controlled discharge life cycling studies on lead-acid batteries

    Get PDF
    State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging

    Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors

    Full text link
    The most recent LHC data have provided a considerable improvement in the precision with which various Higgs production and decay channels have been measured. Using all available public results from ATLAS, CMS and the Tevatron, we derive for each final state the combined confidence level contours for the signal strengths in the (gluon fusion + ttH associated production) versus (vector boson fusion + VH associated production) space. These "combined signal strength ellipses" can be used in a simple, generic way to constrain a very wide class of New Physics models in which the couplings of the Higgs boson deviate from the Standard Model prediction. Here, we use them to constrain the reduced couplings of the Higgs boson to up-quarks, down-quarks/leptons and vector boson pairs. We also consider New Physics contributions to the loop-induced gluon-gluon and photon-photon couplings of the Higgs, as well as invisible/unseen decays. Finally, we apply our fits to some simple models with an extended Higgs sector, in particular to Two-Higgs-Doublet models of Type I and Type II, the Inert Doublet model, and the Georgi-Machacek triplet Higgs model.Comment: 31 pages, 15 figures; v2: fixed important factor of 2 missing in Eq. (1) (results unchanged), extended discussion in the next-to-last paragraph of Section 3, some references added; v3: appendices and references added, matches version accepted by PR

    Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP

    Full text link
    We compare results of four public supersymmetric (SUSY) spectrum codes, Isajet, Softsusy, Spheno and Suspect to estimate the present-day uncertainty in the calculation of the relic density of dark matter in mSUGRA models. We find that even for mass differences of about 1% the spread in the obtained relic densities can be 10%. In difficult regions of the parameter space, such as large tan(beta) or large m_0, discrepancies in the relic density are much larger. We also find important differences in the stau co-annihilation region. We show the impact of these uncertainties on the bounds from WMAP for several scenarios, concentrating on the regions of parameter space most relevant for collider phenomenology. We also discuss the case of non-zero A_0 and the stop co-annihilation region. Moreover, we present a web application for the online comparison of the spectrum codes.Comment: 26 pages, 6 figures, 10 tables; version to appear in PR

    Two Higgs Bosons at the Tevatron and the LHC?

    Full text link
    The best fit to the Tevatron results in the bb channel and the mild excesses at CMS in the gamma-gamma channel at 136 GeV and in the tau-tau channel above 132 GeV can be explained by a second Higgs state in this mass range, in addition to the one at 125 GeV recently discovered at the LHC. We show that a scenario with two Higgs bosons at 125 GeV and 136 GeV can be consistent with practically all available signal rates, including a reduced rate in the tau-tau channel around 125 GeV as reported by CMS. An example in the parameter space of the general NMSSM is given where, moreover, the signal rates of the 125 GeV Higgs boson in the gamma-gamma channels are enhanced relative to the expectation for a SM Higgs boson of this mass.Comment: 13 pages, 4 Table

    Status of invisible Higgs decays

    Full text link
    We analyze the extent to which the LHC and Tevatron results as of the end of 2012 constrain invisible (or undetected) decays of the Higgs boson-like state at ~ 125 GeV. To this end we perform global fits for several cases: 1) a Higgs boson with Standard Model (SM) couplings but additional invisible decay modes; 2) SM couplings to fermions and vector bosons, but allowing for additional new particles modifying the effective Higgs couplings to gluons and photons; 3) no new particles in the loops but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM, treated as free parameters. We find that in the three cases invisible decay rates of 23%, 61%, 88%, respectively, are consistent with current data at 95% confidence level (CL). Limiting the coupling to vector bosons, CV, to CV < 1 in case 3) reduces the allowed invisible branching ratio to 56% at 95% CL. Requiring in addition that the Higgs couplings to quarks have the same sign as in the SM, an invisible rate of up to 36% is allowed at 95% CL. We also discuss direct probes of invisible Higgs decays, as well as the interplay with dark matter searches.Comment: 14 pages, 8 figures; v2: extended discussion on ZH associated production, references added, minor corrections; v4: matches final version published in Phys. Lett.

    Higgs Couplings at the End of 2012

    Get PDF
    Performing a fit to all publicly available data, we analyze the extent to which the latest results from the LHC and Tevatron constrain the couplings of the Higgs boson-like state at ~ 125 GeV. To this end we assume that only Standard Model (SM) particles appear in the Higgs decays, but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM are free parameters. We also assume that the leptonic couplings relative to the SM are the same as for the down-quark, and a custodial symmetry for the V=W,Z couplings. In the simplest approach, the effective Higgs couplings to gluons and photons are computed in terms of the previous parameters. This approach is also applied to Two-Higgs-Doublet Models of Type I and Type II. However, we also explore the possibility that the net Higgs to gluon-gluon and gamma-gamma couplings have extra loop contributions coming from Beyond-the-Standard Model physics. We find that the SM p-value ~ 0.5 is more than 2 sigma away from fits in which: a) there is some non-SM contribution to the gamma-gamma coupling of the Higgs; or b) the sign of the top quark coupling to the Higgs is opposite that of the W coupling. In both these cases p-values ~ 0.9 can be achieved. Since option b) is difficult to realize in realistic models, it would seem that new physics contributions to the effective couplings of the Higgs are preferred.Comment: 25 pages, 11 figures; v2: minor corrections, references added; v3: acknowledgement adde

    Collider limits on new physics within micrOMEGAs4.3

    Get PDF
    Results from the LHC put severe constraints on models of new physics. This includes constraints on the Higgs sector from the precise measurement of the mass and couplings of the 125GeV Higgs boson, as well as limits from searches for other new particles. We present the procedure to use these constraints in micrOMEGAs by interfacing it to the external codes Lilith, HiggsSignals, HiggsBounds and SModelS. A few dedicated modules are also provided. With these new features, micrOMEGAs_4.3 provides a generic framework for evaluating dark matter observables together with collider and non-collider constraints.Comment: 23 page

    On the treatment of threshold effects in SUSY spectrum computations

    Get PDF
    We take a critical view of the treatment of threshold effects in SUSY spectrum computations from high-scale input. We discuss the two principal methods of (a) renormalization at a common SUSY scale versus (b) integrating out sparticles at their own mass scales. We point out problems in the implementations in public spectrum codes, together with suggestions for improvements. In concrete examples, we compare results of Isajet7.72 and Spheno2.2.3, and present the improvements done in Isajet7.73. We also comment on theoretical uncertainties. Last but not least, we outline how a consistent multiscale approach may be achieved.Comment: 15 pages, 1 figur

    CP Studies of the Higgs Sector

    Full text link
    The CP structure of the Higgs sector will be of great interest to future colliders. The measurement of the CP properties of candidate Higgs particles will be essential in order to distinguish models of electroweak symmetry breaking, and to discover or place limits on CP-violation in the Higgs sector. In this report we briefly summarize various methods of determining the CP properties of Higgs bosons at different colliders and identify areas where more study is required. We also provide an example of a synergy between the LHC, an e+e- Linear Collider and a Photon Collider, for the examination of CP-violation in a Two-Higgs-Doublet-Model.Comment: A contribution to the LHC / LC Study Group document; 9 pages, 2 figure

    SUSY-QCD corrections to stop and sbottom decays into Higgs bosons

    Full text link
    We calculate the order(\alpha_s) SUSY-QCD corrections to the widths of stop and sbottom decays into Higgs bosons within the Minimal Supersymmetric Standard Model. We give the complete analytical formulae paying particular attention to the on-shell renormalization of the soft SUSY-breaking parameters. We also perform a detailed numerical analysis of both stop and sbottom decays into all Higgs bosons h^0, H^0, A^0, and H^\pm. We find that the SUSY-QCD corrections are significant, mostly negative and of the order of a few ten percent.Comment: revised version, one figure and a few comments adde
    • …
    corecore