979 research outputs found

    1D Lieb-Liniger Bose Gas as Non-Relativistic Limit of the Sinh-Gordon Model

    Full text link
    The repulsive Lieb-Liniger model can be obtained as the non-relativistic limit of the Sinh-Gordon model: all physical quantities of the latter model (S-matrix, Lagrangian and operators) can be put in correspondence with those of the former. We use this mapping, together with the Thermodynamical Bethe Ansatz equations and the exact form factors of the Sinh-Gordon model, to set up a compact and general formalism for computing the expectation values of the Lieb-Liniger model both at zero and finite temperature. The computation of one-point correlators is thoroughly detailed and, when possible, compared with known results in the literature.Comment: published version, 27 pages, 10 figure

    Bethe Ansatz Matrix Elements as Non-Relativistic Limits of Form Factors of Quantum Field Theory

    Full text link
    We show that the matrix elements of integrable models computed by the Algebraic Bethe Ansatz can be put in direct correspondence with the Form Factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe Ansatz model can be regarded as a suitable non-relativistic limit of the S-matrix of a field theory, and when there is a well-defined mapping between the Hilbert spaces and operators of the two theories. This correspondence provides an efficient method to compute matrix elements of Bethe Ansatz integrable models, overpassing the technical difficulties of their direct determination. We analyze this correspondence for the simplest example in which it occurs, i.e. the Quantum Non-Linear Schrodinger and the Sinh-Gordon models.Comment: 10 page

    Overlap singularity and time evolution in integrable quantum field theory

    Full text link
    We study homogeneous quenches in integrable quantum field theory where the initial state contains zero-momentum particles. We demonstrate that the two-particle pair amplitude necessarily has a singularity at the two-particle threshold. Albeit the explicit discussion is carried out for special (integrable) initial states, we argue that the singularity is inevitably present and is a generic feature of homogeneous quenches involving the creation of zero momentum particles. We also identify the singularity in quenches in the Ising model across the quantum critical point, and compute it perturbatively in phase quenches in the quantum sine-Gordon model which are potentially relevant to experiments. We then construct the explicit time dependence of one-point functions using a linked cluster expansion regulated by a finite volume parameter. We find that the secular contribution normally linear in time is modified by a tlntt\ln t term. We additionally encounter a novel type of secular contribution which is shown to be related to parametric resonance. It is an interesting open question to resum the new contributions and to establish their consequences directly observable in experiments or numerical simulations.Comment: 30+45 pages, 7 figure

    Some semi-classical issues in boundary sine-Gordon model

    Get PDF
    The semi-classical quantisation of the two lowest energy static solutions of boundary sine-Gordon model is considered. A relation between the Lagrangian and bootstrap parameters is established by comparing their quantum corrected energy difference and the exact one. This relation is also confirmed by studying the semi-classical limit of soliton reflections on the boundary

    Some semi-classical issues in the boundary sine-Gordon model

    Get PDF
    The semi-classical quantisation of the two lowest energy static solutions of boundary sine-Gordon model is considered. A relation between the Lagrangian and bootstrap parameters is established by comparing their quantum corrected energy difference and the exact one. This relation is also confirmed by studying the semi-classical limit of soliton reflections on the boundary.Comment: 22 pages, references update

    Boundary form factors in finite volume

    Get PDF
    We describe the volume dependence of matrix elements of local boundary fields to all orders in inverse powers of the volume. Using the scaling boundary Lee-Yang model as testing ground, we compare the matrix elements extracted from boundary truncated conformal space approach to exact form factors obtained using the bootstrap method. We obtain solid confirmation for the boundary form factor bootstrap, which is different from all previously available tests in that it is a non-perturbative and direct comparison of exact form factors to multi-particle matrix elements of local operators, computed from the Hamiltonian formulation of the quantum field theory. (C) 2008 Elsevier B.V. All rights reserved

    Expectation Values in the Lieb-Liniger Bose Gas

    Full text link
    Taking advantage of an exact mapping between a relativistic integrable model and the Lieb-Liniger model we present a novel method to compute expectation values in the Lieb-Liniger Bose gas both at zero and finite temperature. These quantities, relevant in the physics of one-dimensional ultracold Bose gases, are expressed by a series that has a remarkable behavior of convergence. Among other results, we show the computation of the three-body expectation value at finite temperature, a quantity that rules the recombination rate of the Bose gas.Comment: Published version. Selected for the December 2009 issue of Virtual Journal of Atomic Quantum Fluid

    Clinical trial of FK 506 immunosuppression in adult cardiac transplantation

    Get PDF
    The new immunosuppressive agent FK 506 was used as primary immunotherapy in conjunction with low-dose steroids and azathioprine in 72 patients subsequent to orthotopic cardiac transplantation. Overall patient survival at a mean follow-up of 360 days was 92%. The number of episodes of cardiac rejection (grade 3A or greater) within 90 days of transplantation was 0.95 per patient. The actuarial freedom from rejection at 90 days was 41%. Achievement of this level of immunosuppression is comparable with that of cyclosporine-based triple-drug therapy with OKT3 immunoprophylaxis. Thirty percent of patients were tapered off all steroids, and the average steroid dose in the group who received steroids was 8.6 mg of prednisone per day. The incidence of infection reflected the diminished necessity for steroids: seven major infections (10%) and 11 minor infections (16%). Renal dysfunction occurred during the perioperative period in most patients in this trial. However, the incidence of hypertension was 54% compared with 70% during the cyclosporine era. Ten adults underwent successful rescue therapy with FK 506 after cardiac rejection refractory to conventional immunotherapy. Side effects of FK 506 were notably few, and the results of the trial are encouraging for the future of the cardiac transplant recipient. © 1992
    corecore