237 research outputs found
Learning an Interactive Segmentation System
Many successful applications of computer vision to image or video
manipulation are interactive by nature. However, parameters of such systems are
often trained neglecting the user. Traditionally, interactive systems have been
treated in the same manner as their fully automatic counterparts. Their
performance is evaluated by computing the accuracy of their solutions under
some fixed set of user interactions. This paper proposes a new evaluation and
learning method which brings the user in the loop. It is based on the use of an
active robot user - a simulated model of a human user. We show how this
approach can be used to evaluate and learn parameters of state-of-the-art
interactive segmentation systems. We also show how simulated user models can be
integrated into the popular max-margin method for parameter learning and
propose an algorithm to solve the resulting optimisation problem.Comment: 11 pages, 7 figures, 4 table
AP: Artificial Programming
The ability to automatically discover a program consistent with a given user intent (specification) is the holy grail of Computer Science. While significant progress has been made on the so-called problem of Program Synthesis, a number of challenges remain; particularly for the case of synthesizing richer and larger programs. This is in large part due to the difficulty of search over the space of programs. In this paper, we argue that the above-mentioned challenge can be tackled by learning synthesizers automatically from a large amount of training data. We present a first step in this direction by describing our novel synthesis approach based on two neural architectures for tackling the two key challenges of Learning to understand partial input-output specifications and Learning to search programs. The first neural architecture called the Spec Encoder computes a continuous representation of the specification, whereas the second neural architecture called the Program Generator incrementally constructs programs in a hypothesis space that is conditioned by the specification vector. The key idea of the approach is to train these architectures using a large set of (spec,P) pairs, where P denotes a program sampled from the DSL L and spec denotes the corresponding specification satisfied by P. We demonstrate the effectiveness of our approach on two preliminary instantiations. The first instantiation, called Neural FlashFill, corresponds to the domain of string manipulation programs similar to that of FlashFill. The second domain considers string transformation programs consisting of composition of API functions. We show that a neural system is able to perform quite well in learning a large majority of programs from few input-output examples. We believe this new approach will not only dramatically expand the applicability and effectiveness of Program Synthesis, but also would lead to the coming together of the Program Synthesis and Machine Learning research disciplines
Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems
Crowdsourcing systems commonly face the problem of aggregating multiple
judgments provided by potentially unreliable workers. In addition, several
aspects of the design of efficient crowdsourcing processes, such as defining
worker's bonuses, fair prices and time limits of the tasks, involve knowledge
of the likely duration of the task at hand. Bringing this together, in this
work we introduce a new time--sensitive Bayesian aggregation method that
simultaneously estimates a task's duration and obtains reliable aggregations of
crowdsourced judgments. Our method, called BCCTime, builds on the key insight
that the time taken by a worker to perform a task is an important indicator of
the likely quality of the produced judgment. To capture this, BCCTime uses
latent variables to represent the uncertainty about the workers' completion
time, the tasks' duration and the workers' accuracy. To relate the quality of a
judgment to the time a worker spends on a task, our model assumes that each
task is completed within a latent time window within which all workers with a
propensity to genuinely attempt the labelling task (i.e., no spammers) are
expected to submit their judgments. In contrast, workers with a lower
propensity to valid labeling, such as spammers, bots or lazy labelers, are
assumed to perform tasks considerably faster or slower than the time required
by normal workers. Specifically, we use efficient message-passing Bayesian
inference to learn approximate posterior probabilities of (i) the confusion
matrix of each worker, (ii) the propensity to valid labeling of each worker,
(iii) the unbiased duration of each task and (iv) the true label of each task.
Using two real-world public datasets for entity linking tasks, we show that
BCCTime produces up to 11% more accurate classifications and up to 100% more
informative estimates of a task's duration compared to state-of-the-art
methods
- …