141 research outputs found

    Potential carbon leakage under the Paris agreement

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MCarbon leakage is the effect of emissions transferring to certain countries due to others having a stricter climate policy. This phenomenon is shown to have undercut the effectiveness of the Kyoto Protocol. Considering the increasingly globalised nature of the world economy, carbon leakage may have an even greater potential under the Paris Agreement some fifteen years later. Although a more global approach to combatting climate change, the Paris Agreement is susceptible to leakage because of its lack of policy harmonization and enforcement mechanisms. Here we perform the first quantitative analysis of the potential for carbon leakage under Paris, using the GTAP-E general equilibrium model of the world economy with energy and carbon emissions to analyse leakage effects under six scenarios. Two of these scenarios analyse regions implementing climate policy in isolation, two greater participation, but still not harmonized, global Paris Agreement policy, and a further two analyse the effect of a US withdrawal from the agreement. Both cases are considered with and without the US withdrawal. Our analysis demonstrates that there is potential for significant carbon leakage effects, in line with the rates produced from studies on the Kyoto Protocol. Depending on model elasticities, we find medium carbon leakage in the range of 1-9% (with a central estimate of 3-4%) under co-ordinated Paris Agreement policy across countries, compared to high leakage of 8-31% when countries operate in isolation. However, scenarios where the US withdraws from the agreement result in roughly doubling of leakage rates, in the range of 3-16% (central estimate 7%), which demonstrates the vulnerability of the Paris Agreement in its current form. To limit leakage effects greater policy co-ordination to achieve consistent implicit carbon prices is needed across countries

    Implications of net energy-return-on-investment for a low-carbon energy transition

    Get PDF
    Unidad de excelencia María de Maeztu MdM-2015-0552Low-carbon energy transitions aim to stay within a carbon budget that limits potential climate change to 2 °C-or well below-through a substantial growth in renewable energy sources alongside improved energy efficiency and carbon capture and storage. Current scenarios tend to overlook their low net energy returns compared to the existing fossil fuel infrastructure. Correcting from gross to net energy, we show that a low-carbon transition would probably lead to a 24-31% decline in net energy per capita by 2050, which implies a strong reversal of the recent rising trends of 0.5% per annum. Unless vast end-use efficiency savings can be achieved in the coming decades, current lifestyles might be impaired. To maintain the present net energy returns, solar and wind renewable power sources should grow two to three times faster than in other proposals. We suggest a new indicator, 'energy return on carbon', to assist in maximizing the net energy from the remaining carbon budget

    24 h severe energy restriction impairs post-prandial glycaemic control in young, lean males

    Get PDF
    Intermittent energy restriction (IER) involves short periods of severe energy restriction interspersed with periods of adequate energy intake, and can induce weight loss. Insulin sensitivity is impaired by short-term, complete energy restriction, but the effects of IER are not well known. In randomised order, 14 lean men (age: 25 (SD 4) y; BMI: 24 (SD 2) kg·m-2; body fat: 17 (4) %) consumed 24 h diets providing 100% (10441 (SD 812) kJ; EB) or 25% (2622 (SD 204) kJ; ER) of estimated energy requirements, followed by an oral glucose tolerance test (OGTT; 75g glucose drink) overnight fasted. Plasma/ serum glucose, insulin, non-esterified fatty acids (NEFA), glucagon-like peptide-1 (GLP-1), glucose-dependant insulinotropic peptide (GIP) and fibroblast growth factor-21 (FGF21) were assessed before and after (0 h) each 24 h dietary intervention, and throughout the 2 h OGTT. Homeostatic model assessment of insulin resistance (HOMA2-IR) assessed the fasted response and incremental (iAUC) or total (tAUC) area under the curve were calculated during the OGTT. At 0 h, HOMA2-IR was 23% lower after ER compared to EB (P<0.05). During the OGTT, serum glucose iAUC (P<0.001) serum insulin iAUC (P<0.05) and plasma NEFA tAUC (P<0.01) were greater during ER, but GLP-1 (P=0.161), GIP (P=0.473) and FGF21 (P=0.497) tAUC were similar between trials. These results demonstrate that severe energy restriction acutely impairs postprandial glycaemic control in lean men, despite reducing HOMA2-IR. Chronic intervention studies are required to elucidate the long-term effects of IER on indices of insulin sensitivity, particularly in the absence of weight loss

    Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

    Get PDF
    The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Structure, function and diversity of the healthy human microbiome

    Get PDF
    Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273 to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander; U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.; U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.; R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.; R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.; R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang, F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J. V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.); DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research; U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL Laboratory-Directed Research and Development grant 20100034DR and the US Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis of the HMPdata was performed using National Energy Research Scientific Computing resources, the BluBioU Computational Resource at Rice University

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector