129 research outputs found

    First evidence of cryptotephra in palaeoenvironmental records associated with Norse occupation sites in Greenland

    Get PDF
    The Norse/Viking occupation of Greenland is part of a dispersal of communities across the North Atlantic coincident with the supposed Medieval Warm Period of the late 1st millennium AD. The abandonment of the Greenland settlements has been linked to climatic deterioration in the Little Ice Age as well as other possible explanations. There are significant dating uncertainties over the time of European abandonment of Greenland and the potential influence of climatic deterioration. Dating issues largely revolve around radiocarbon chronologies for Norse settlements and associated mire sequences close to settlement sites. Here we show the potential for moving this situation forward by a combination of palynological, radiocarbon and cryptotephra analyses of environmental records close to three ‘iconic’ Norse sites in the former Eastern Settlement of Greenland – Herjolfsnes, Hvalsey and Garðar (the modern Igaliku). While much work remains to be undertaken, our results show that palynological evidence can provide a useful marker for both the onset and end of Norse occupation in the region, while the radiocarbon chronologies for these sequences remain difficult. Significantly, we here demonstrate the potential for cryptotephra to become a useful tool in resolving the chronology of Norse occupation, when coupled with palynology. For the first time, we show that cryptotephra are present within palaeoenvironmental sequences located within or close to Norse settlement ruin-groups, with tephra horizons detected at all three sites. While shard concentrations were small at Herjolfsnes, concentrations sufficient for geochemical analyses were detected at Igaliku and Hvalsey. WDS-EPMA analyses of these tephra indicate that, unlike the predominantly Icelandic tephra sources reported in the Greenland ice core records, the tephra associated with the Norse sites correlate more closely with volcanic centres in the Aleutians and Cascades. Recent investigations of cryptotephra dispersal from North American centres, along with our new findings, point to the potential for cryptotephra to facilitate hypothesis testing, providing a key chronological tool for refining the timing of Norse activities in Greenland (e.g. abandonment) and of environmental contexts and drivers (e.g. climate forcing)

    Reciprocal control in adaptive environments

    Get PDF
    Computing has become an established part of the built environment augmenting it to become adaptive. We generally assume that we control the adaptive environments we inhabit. Using an existing adaptive environment prototype, we conducted a controlled study testing how the reversal of control (where the environment attempts to influence the behaviour of the inhabitant) would affect participants. Most participants changed their respiratory behaviour in accordance with this environmental manipulation. Behavioural change occurred either consciously or unconsciously. We explain the two different paths leading participants to behavioural change: (1) We adapt the model of interbodily resonance, a process of bodily interaction observable between, for example, partners engaged in verbal dialogue, to describe the unconscious bodily response to subtle changes in the environment. (2) And we apply the model of secondary control, an adjustment of one’s own expectations to maintain the pretence of control, to describe conscious cognitive adaptation to the changing environment. We also discuss potential applications of our findings in therapeutic and other settings

    Impact of Age and Biological Sex on Cerebrovascular Reactivity in Adult Moderate/Severe Traumatic Brain Injury: An Exploratory Analysis

    Get PDF
    Age and biological sex are two potential important modifiers of cerebrovascular reactivity post-traumatic brain injury (TBI) requiring close evaluation for potential subgroup responses. The goal of this study was to provide a preliminary exploratory analysis of the impact of age and biological sex on measures of cerebrovascular function in moderate/severe TBI. Forty-nine patients from the prospectively maintained TBI database at the University of Manitoba with archived high-frequency digital cerebral physiology were evaluated. Cerebrovascular reactivity indices were derived as follows: PRx (correlation between intracranial pressure [ICP] and mean arterial pressure [MAP]), PAx (correlation between pulse amplitude of ICP [AMP] and MAP), and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). Time above clinically significant thresholds for each index was calculated over different periods of the acute intensive care unit stay. The association between PRx, PAx, and RAC measures with age was assessed using linear regression, and an age trichotomization scheme (60) using Kruskal-Wallis testing. Similarly, association with biological sex was tested using Mann-Whitney U testing. Biological sex did not demonstrate an impact on any measures of cerebrovascular reactivity. Linear regression between age and PAx and RAC demonstrated a statistically significant positive linear relationship. Median PAx and RAC measures between trichotomized age categories demonstrated statistically significant increases with advancing age. The PRx failed to demonstrate any statistically significant relationship with age in this cohort, suggesting that in elderly patients with controlled ICP, PAx and RAC may be better metrics for detecting impaired cerebrovascular reactivity. Biological sex appears to not be associated with differences in cerebrovascular reactivity in this cohort. The PRx performed the worst in detecting impaired cerebrovascular reactivity in those with advanced age, where PAx and RAC appear to have excelled. Future work is required to validate these findings and explore the utility of different cerebrovascular reactivity indices

    Continuous Time-Domain Cerebrovascular Reactivity Metrics and Discriminate Capacity for the Upper and Lower Limits of Autoregulation: A Scoping Review of the Animal Literature.

    Get PDF
    Over a wide range of systemic arterial pressures, cerebral blood flow (CBF) is regulated fairly constantly by the cerebral vessels in a process termed cerebral autoregulation (CA), which is depicted by the Lassen autoregulatory curve. After traumatic brain injury (TBI), CA can get impaired and these impairments manifest in changes of the Lassen autoregulatory curve. Continuous surrogate metrics of pressure-based CA, termed cerebrovascular reactivity (CVR) metrics, evaluate the relationship between slow vasogenic fluctuations in a driving pressure for cerebral blood flow, and the most commonly studied and utilized measures are based in the time domain and have been increasingly applied in bedside TBI care and have sparked the investigation of individualized cerebral perfusion pressure targets. However, not all CVR metrics have been validated as true measures of autoregulation in the pre-clinical setting. We reviewed all available pre-clinical animal literature that assessed the association between continuous time-domain metrics of CVR and some aspect of the Lassen autoregulatory curve. All 15 articles found associated the evaluated continuous metrics to the lower limit of autoregulation curve whereas none looked at the upper limit. Most of the evaluated metrics showed the ability to discriminate the lower limit of autoregulation with various methods of perturbation. Further work is required to evaluate the utility of such surrogate measures against the upper limit of autoregulation, while also providing validation to the existing literature supporting specific indices and their ability to discriminate the lower limit

    Intracranial Pressure-Derived Cerebrovascular Reactivity Indices, Chronological Age, and Biological Sex in Traumatic Brain Injury: A Scoping Review.

    Get PDF
    To date, there has been limited literature exploring the association between age and sex with cerebrovascular reactivity (CVR) in moderate/severe traumatic brain injury (TBI). Given the known link between age, sex, and cerebrovascular function, knowledge of the impacts on continuously assessed CVR is critical for the development of future therapeutics. We conducted a scoping review of the literature for studies that had a direct statistical interrogation of the relationship between age, sex, and continuous intracranial pressure (ICP)-based indices of CVR in moderate/severe TBI. The ICP-based indices researched included: pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC. MEDLINE, BIOSIS, EMBASE, SCOPUS, Global Health, and the Cochrane library were searched from inception to June 2021 for relevant articles. A total of 10 original studies fulfilled our inclusion criteria. Nine of the articles documented a correlation between advanced age and worse CVR, with eight using PRx (2192 total patients), three using PAx (978 total patients), and one using RAC (358 total patients), p < 0.05; R ranging from 0.17 to 0.495 for all indices across all studies. Three articles (1256 total patients) displayed a correlation between biological sex and PRx, with females trending towards higher PRx values (p < 0.05) in the limited available literature. However, no literature exists comparing PAx or RAC with biological sex. Findings showed that aging was associated with impaired CVR. We observed a trend between female sex and worse PRx values, but the literature was limited and statistical significance was borderline. The identified studies were few in number, carried significant population heterogeneity, and utilized grand averaging of large epochs of physiology during statistical comparisons with age and biological sex. Because of the heterogeneous nature of TBI populations and limited focus on the effects of age and sex on outcomes in TBI, it is challenging to highlight the differences between the indices and patient age groups and sex. The largest study showing an association between PRx and age was done by Zeiler and colleagues, where 165 patients were studied noting that patients with a mean PRx value above zero had a mean age above 51.4 years versus a mean age of 41.4 years for those with a mean PRx value below zero (p = 0.0007). The largest study showing an association between PRx and sex was done by Czosnyka and colleagues, where 469 patients were studied noting that for patients <50 years of age, PRx was worse in females (0.11 ± 0.047) compared to males (0.044 ± 0.031), p < 0.05. The findings from these 10 studies provide preliminary data, but are insufficient to definitively characterize the impact of age and sex on CVR in moderate/severe TBI. Future work in the field should focus on the impact of age and sex on multi-modal cerebral physiological monitoring

    The effect of burst suppression on cerebral blood flow and autoregulation: a scoping review of the human and animal literature

    Get PDF
    Background: Burst suppression (BS) is an electroencephalography (EEG) pattern in which there are isoelectric periods interspersed with bursts of cortical activity. Targeting BS through anaesthetic administration is used as a tool in the neuro-intensive care unit but its relationship with cerebral blood flow (CBF) and cerebral autoregulation (CA) is unclear. We performed a systematic scoping review investigating the effect of BS on CBF and CA in animals and humans.Methods: We searched MEDLINE, BIOSIS, EMBASE, SCOPUS and Cochrane library from inception to August 2022. The data that were collected included study population, methods to induce and measure BS, and the effect on CBF and CA.Results: Overall, there were 66 studies that were included in the final results, 41 of which examined animals, 24 of which examined humans, and 1 of which examined both. In almost all the studies, BS was induced using an anaesthetic. In most of the animal and human studies, BS was associated with a decrease in CBF and cerebral metabolism, even if the mean arterial pressure remained constant. The effect on CA during periods of stress (hypercapnia, hypothermia, etc.) was variable.Discussion: BS is associated with a reduction in cerebral metabolic demand and CBF, which may explain its usefulness in patients with brain injury. More evidence is needed to elucidate the connection between BS and CA

    High spatial and temporal resolution cerebrovascular reactivity for humans and large mammals: A technological description of integrated fNIRS and niABP mapping system

    Get PDF
    Introduction: The process of cerebral vessels maintaining cerebral blood flow (CBF) fairly constant over a wide range of arterial blood pressure is referred to as cerebral autoregulation (CA). Cerebrovascular reactivity is the mechanism behind this process, which maintains CBF through constriction and dilation of cerebral vessels. Traditionally CA has been assessed statistically, limited by large, immobile, and costly neuroimaging platforms. However, with recent technology advancement, dynamic autoregulation assessment is able to provide more detailed information on the evolution of CA over long periods of time with continuous assessment. Yet, to date, such continuous assessments have been hampered by low temporal and spatial resolution systems, that are typically reliant on invasive point estimations of pulsatile CBF or cerebral blood volume using commercially available technology.Methods: Using a combination of multi-channel functional near-infrared spectroscopy and non-invasive arterial blood pressure devices, we were able to create a system that visualizes CA metrics by converting them to heat maps drawn on a template of human brain.Results: The custom Python heat map module works in “offline” mode to visually portray the CA index per channel with the use of colourmap. The module was tested on two different mapping grids, 8 channel and 24 channel, using data from two separate recordings and the Python heat map module was able read the CA indices file and represent the data visually at a preselected rate of 10 s.Conclusion: The generation of the heat maps are entirely non-invasive, with high temporal and spatial resolution by leveraging the recent advances in NIRS technology along with niABP. The CA mapping system is in its initial stage and development plans are ready to transform it from “offline” to real-time heat map generation
    • 

    corecore