2 research outputs found

    Chemical Interface Damping Depends on Electrons Reaching the Surface

    No full text
    Metallic nanoparticles show extraordinary strong light absorption near their plasmon resonance, orders of magnitude larger compared to nonmetallic nanoparticles. This ā€œantennaā€ effect has recently been exploited to transfer electrons into empty states of an attached material, for example to create electric currents in photovoltaic devices or to induce chemical reactions. It is generally assumed that plasmons decay into hot electrons, which then transfer to the attached material. Ultrafast electronā€“electron scattering reduces the lifetime of hot electrons drastically in metals and therefore strongly limits the efficiency of plasmon induced hot electron transfer. However, recent work has revived the concept of plasmons decaying directly into an interfacial charge transfer state, thus avoiding the intermediate creation of hot electrons. This direct decay mechanism has mostly been neglected, and has been termed chemical interface damping (CID). CID manifests itself as an additional damping contribution to the homogeneous plasmon line width. In this study, we investigate the size dependence of CID by following the plasmon line width of gold nanorods during the adsorption process of thiols on the gold surface with single particle spectroscopy. We show that CID scales inversely with the effective path length of electrons, i.e., the average distance of electrons to the surface. Moreover, we compare the contribution of CID to other competing plasmon decay channels and predict that CID becomes the dominating plasmon energy decay mechanism for very small gold nanorods

    Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System

    No full text
    We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications
    corecore