99 research outputs found

    Spectral fit residuals as an indicator to increase model complexity

    Full text link
    Spectral fitting of X-ray data usually involves minimizing statistics like the chi-square and the Cash statistic. Here we discuss their limitations and introduce two measures based on the cumulative sum (CuSum) of model residuals to evaluate whether model complexity could be increased: the percentage of bins exceeding a nominal threshold in a CuSum array (pctCuSum_{CuSum}), and the excess area under the CuSum compared to the nominal (parea_\textit{area}). We demonstrate their use with an application to a Chandra\textit{Chandra} ACIS spectral fit.Comment: 3 pages, 1 figure, published in the Research Notes of the American Astronomical Society (RNAAS

    Preprocessing Solar Images while Preserving their Latent Structure

    Get PDF
    Telescopes such as the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory, a NASA satellite, collect massive streams of high resolution images of the Sun through multiple wavelength filters. Reconstructing pixel-by-pixel thermal properties based on these images can be framed as an ill-posed inverse problem with Poisson noise, but this reconstruction is computationally expensive and there is disagreement among researchers about what regularization or prior assumptions are most appropriate. This article presents an image segmentation framework for preprocessing such images in order to reduce the data volume while preserving as much thermal information as possible for later downstream analyses. The resulting segmented images reflect thermal properties but do not depend on solving the ill-posed inverse problem. This allows users to avoid the Poisson inverse problem altogether or to tackle it on each of \sim10 segments rather than on each of \sim107^7 pixels, reducing computing time by a factor of \sim106^6. We employ a parametric class of dissimilarities that can be expressed as cosine dissimilarity functions or Hellinger distances between nonlinearly transformed vectors of multi-passband observations in each pixel. We develop a decision theoretic framework for choosing the dissimilarity that minimizes the expected loss that arises when estimating identifiable thermal properties based on segmented images rather than on a pixel-by-pixel basis. We also examine the efficacy of different dissimilarities for recovering clusters in the underlying thermal properties. The expected losses are computed under scientifically motivated prior distributions. Two simulation studies guide our choices of dissimilarity function. We illustrate our method by segmenting images of a coronal hole observed on 26 February 2015

    Detecting Unspecified Structure in Low-Count Images

    Full text link
    Unexpected structure in images of astronomical sources often presents itself upon visual inspection of the image, but such apparent structure may either correspond to true features in the source or be due to noise in the data. This paper presents a method for testing whether inferred structure in an image with Poisson noise represents a significant departure from a baseline (null) model of the image. To infer image structure, we conduct a Bayesian analysis of a full model that uses a multiscale component to allow flexible departures from the posited null model. As a test statistic, we use a tail probability of the posterior distribution under the full model. This choice of test statistic allows us to estimate a computationally efficient upper bound on a p-value that enables us to draw strong conclusions even when there are limited computational resources that can be devoted to simulations under the null model. We demonstrate the statistical performance of our method on simulated images. Applying our method to an X-ray image of the quasar 0730+257, we find significant evidence against the null model of a single point source and uniform background, lending support to the claim of an X-ray jet

    Automatic estimation of flux distributions of astrophysical source populations

    Full text link
    In astrophysics a common goal is to infer the flux distribution of populations of scientifically interesting objects such as pulsars or supernovae. In practice, inference for the flux distribution is often conducted using the cumulative distribution of the number of sources detected at a given sensitivity. The resulting "log(N>S)\log(N>S)-log(S)\log (S)" relationship can be used to compare and evaluate theoretical models for source populations and their evolution. Under restrictive assumptions the relationship should be linear. In practice, however, when simple theoretical models fail, it is common for astrophysicists to use prespecified piecewise linear models. This paper proposes a methodology for estimating both the number and locations of "breakpoints" in astrophysical source populations that extends beyond existing work in this field. An important component of the proposed methodology is a new interwoven EM algorithm that computes parameter estimates. It is shown that in simple settings such estimates are asymptotically consistent despite the complex nature of the parameter space. Through simulation studies it is demonstrated that the proposed methodology is capable of accurately detecting structural breaks in a variety of parameter configurations. This paper concludes with an application of our methodology to the Chandra Deep Field North (CDFN) data set.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS750 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore