25 research outputs found

    Prediction of Tyrosine Sulfation with mRMR Feature Selection and Analysis

    No full text
    Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation

    Prediction of Tyrosine Sulfation with mRMR Feature Selection and Analysis

    No full text
    Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation

    Prediction of Tyrosine Sulfation with mRMR Feature Selection and Analysis

    No full text
    Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation

    Prediction of Tyrosine Sulfation with mRMR Feature Selection and Analysis

    No full text
    Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation

    Prediction of Tyrosine Sulfation with mRMR Feature Selection and Analysis

    No full text
    Protein tyrosine sulfation is a ubiquitous post-translational modification (PTM) of secreted and transmembrane proteins that pass through the Golgi apparatus. In this study, we developed a new method for protein tyrosine sulfation prediction based on a nearest neighbor algorithm with the maximum relevance minimum redundancy (mRMR) method followed by incremental feature selection (IFS). We incorporated features of sequence conservation, residual disorder, and amino acid factor, 229 features in total, to predict tyrosine sulfation sites. From these 229 features, 145 features were selected and deemed as the optimized features for the prediction. The prediction model achieved a prediction accuracy of 90.01% using the optimal 145-feature set. Feature analysis showed that conservation, disorder, and physicochemical/biochemical properties of amino acids all contributed to the sulfation process. Site-specific feature analysis showed that the features derived from its surrounding sites contributed profoundly to sulfation site determination in addition to features derived from the sulfation site itself. The detailed feature analysis in this paper might help understand more of the sulfation mechanism and guide the related experimental validation

    Prediction of Membrane Protein Types in a Hybrid Space

    No full text
    Prediction of the types of membrane proteins is of great importance both for genome-wide annotation and for experimental researchers to understand proteins’ functions. We describe a new strategy for the prediction of the types of membrane proteins using the Nearest Neighbor Algorithm. We introduced a bipartite feature space consisting of two kinds of disjoint vectors, proteins’ domain profile and proteins’ physiochemical characters. Jackknife cross validation test shows that a combination of both features greatly improves the prediction accuracy. Furthermore, the contribution of the physiochemical features to the classification of membrane proteins has also been explored using the feature selection method called “mRMR” (Minimum Redundancy, Maximum Relevance) (IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27 (8), 1226−1238). A more compact set of features that are mostly contributive to membrane protein classification are obtained. The analyses highlighted both hydrophobicity and polarity as the most important features. The predictor with 56 most contributive features achieves an acceptable prediction accuracy of 87.02%. Online prediction service is available freely on our Web site http://pcal.biosino.org/TransmembraneProteinClassification.html

    Prediction of Membrane Protein Types in a Hybrid Space

    No full text
    Prediction of the types of membrane proteins is of great importance both for genome-wide annotation and for experimental researchers to understand proteins’ functions. We describe a new strategy for the prediction of the types of membrane proteins using the Nearest Neighbor Algorithm. We introduced a bipartite feature space consisting of two kinds of disjoint vectors, proteins’ domain profile and proteins’ physiochemical characters. Jackknife cross validation test shows that a combination of both features greatly improves the prediction accuracy. Furthermore, the contribution of the physiochemical features to the classification of membrane proteins has also been explored using the feature selection method called “mRMR” (Minimum Redundancy, Maximum Relevance) (IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27 (8), 1226−1238). A more compact set of features that are mostly contributive to membrane protein classification are obtained. The analyses highlighted both hydrophobicity and polarity as the most important features. The predictor with 56 most contributive features achieves an acceptable prediction accuracy of 87.02%. Online prediction service is available freely on our Web site http://pcal.biosino.org/TransmembraneProteinClassification.html

    Prediction of Membrane Protein Types in a Hybrid Space

    No full text
    Prediction of the types of membrane proteins is of great importance both for genome-wide annotation and for experimental researchers to understand proteins’ functions. We describe a new strategy for the prediction of the types of membrane proteins using the Nearest Neighbor Algorithm. We introduced a bipartite feature space consisting of two kinds of disjoint vectors, proteins’ domain profile and proteins’ physiochemical characters. Jackknife cross validation test shows that a combination of both features greatly improves the prediction accuracy. Furthermore, the contribution of the physiochemical features to the classification of membrane proteins has also been explored using the feature selection method called “mRMR” (Minimum Redundancy, Maximum Relevance) (IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27 (8), 1226−1238). A more compact set of features that are mostly contributive to membrane protein classification are obtained. The analyses highlighted both hydrophobicity and polarity as the most important features. The predictor with 56 most contributive features achieves an acceptable prediction accuracy of 87.02%. Online prediction service is available freely on our Web site http://pcal.biosino.org/TransmembraneProteinClassification.html

    Prediction of Membrane Protein Types in a Hybrid Space

    No full text
    Prediction of the types of membrane proteins is of great importance both for genome-wide annotation and for experimental researchers to understand proteins’ functions. We describe a new strategy for the prediction of the types of membrane proteins using the Nearest Neighbor Algorithm. We introduced a bipartite feature space consisting of two kinds of disjoint vectors, proteins’ domain profile and proteins’ physiochemical characters. Jackknife cross validation test shows that a combination of both features greatly improves the prediction accuracy. Furthermore, the contribution of the physiochemical features to the classification of membrane proteins has also been explored using the feature selection method called “mRMR” (Minimum Redundancy, Maximum Relevance) (IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27 (8), 1226−1238). A more compact set of features that are mostly contributive to membrane protein classification are obtained. The analyses highlighted both hydrophobicity and polarity as the most important features. The predictor with 56 most contributive features achieves an acceptable prediction accuracy of 87.02%. Online prediction service is available freely on our Web site http://pcal.biosino.org/TransmembraneProteinClassification.html

    Prediction of Membrane Protein Types in a Hybrid Space

    No full text
    Prediction of the types of membrane proteins is of great importance both for genome-wide annotation and for experimental researchers to understand proteins’ functions. We describe a new strategy for the prediction of the types of membrane proteins using the Nearest Neighbor Algorithm. We introduced a bipartite feature space consisting of two kinds of disjoint vectors, proteins’ domain profile and proteins’ physiochemical characters. Jackknife cross validation test shows that a combination of both features greatly improves the prediction accuracy. Furthermore, the contribution of the physiochemical features to the classification of membrane proteins has also been explored using the feature selection method called “mRMR” (Minimum Redundancy, Maximum Relevance) (IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27 (8), 1226−1238). A more compact set of features that are mostly contributive to membrane protein classification are obtained. The analyses highlighted both hydrophobicity and polarity as the most important features. The predictor with 56 most contributive features achieves an acceptable prediction accuracy of 87.02%. Online prediction service is available freely on our Web site http://pcal.biosino.org/TransmembraneProteinClassification.html
    corecore