76 research outputs found
On Rumer’s Invariant Theory of Gravitational Waves
Propagation of gravitational potential and gravitational field-strength has been considered here on the basis of Rumer’s Invariant Theory of Gravitational Waves. Finally some special cases of weak field have been discusse
Non-radial oscillations of anisotropic neutron stars in the Cowling approximation
One of the most common assumptions in the study of neutron star models and
their oscillations is that the pressure is isotopic, however there are
arguments that this may not be correct. Thus in the present paper we make a
first step towards studying the nonradial oscillations of neutron stars with an
anisotropic pressure. We adopt the so-called Cowling approximation where the
spacetime metric is kept fixed and the oscillation spectrum for the first few
fluid modes is obtained. The effect of the anisotropy on the frequencies is
apparent, although with the present results it might be hard to distinguish it
from the changes in the frequencies caused by different equations of state.Comment: 17 pages, 8 figures; title changed, comments adde
Quasinormal modes for the charged Vaidya metric
The scalar wave equation is considered in the background of a charged Vaidya
metric in double null coordinates describing a non-stationary charged
black hole with varying mass and charge . The resulting
time-dependent quasinormal modes are presented and analyzed. We show, in
particular, that it is possible to identify some signatures in the quasinormal
frequencies from the creation of a naked singularity.Comment: 4 pages. Prepared for the proceedings of the Spanish Relativity
meeting (ERE2010), Granada, Spain, September 6-10, 201
Gravitational Lensing by Rotating Naked Singularities
We model massive compact objects in galactic nuclei as stationary,
axially-symmetric naked singularities in the Einstein-massless scalar field
theory and study the resulting gravitational lensing. In the weak deflection
limit we study analytically the position of the two weak field images, the
corresponding signed and absolute magnifications as well as the centroid up to
post-Newtonian order. We show that there are a static post-Newtonian
corrections to the signed magnification and their sum as well as to the
critical curves, which are function of the scalar charge. The shift of the
critical curves as a function of the lens angular momentum is found, and it is
shown that they decrease slightingly for the weakly naked and vastly for the
strongly naked singularities with the increase of the scalar charge. The
point-like caustics drift away from the optical axis and do not depend on the
scalar charge. In the strong deflection limit approximation we compute
numerically the position of the relativistic images and their separability for
weakly naked singularities. All of the lensing quantities are compared to
particular cases as Schwarzschild and Kerr black holes as well as
Janis--Newman--Winicour naked singularities.Comment: 35 pages, 30 figure
The Birkhoff Theorem in Multidimensional Gravity
The validity conditions for the extended Birkhoff theorem in multidimensional
gravity with internal spaces are formulated, with no restriction on
space-time dimensionality and signature. Examples of matter sources and
geometries for which the theorem is valid are given. Further generalization of
the theorem is discussed.Comment: 8 page
- …