4 research outputs found

    Video_1_A new contribution to the raptorial ciliate genus Lacrymaria (Protista: Ciliophora): a brief review and comprehensive descriptions of two new species from Changjiang Estuary.MP4

    No full text
    Ciliates serve as excellent indicators for water quality monitoring. However, their utilization is hindered by various taxonomic confusions. The ciliate genus Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic habitats, but its taxonomy has been sparsely investigated using state-of-the-art methods. This study investigated two new Lacrymaria species from Nanhui Wetland, Shanghai, China, using living observation, protargol staining, and molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.</p

    Video_2_A new contribution to the raptorial ciliate genus Lacrymaria (Protista: Ciliophora): a brief review and comprehensive descriptions of two new species from Changjiang Estuary.MP4

    No full text
    Ciliates serve as excellent indicators for water quality monitoring. However, their utilization is hindered by various taxonomic confusions. The ciliate genus Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic habitats, but its taxonomy has been sparsely investigated using state-of-the-art methods. This study investigated two new Lacrymaria species from Nanhui Wetland, Shanghai, China, using living observation, protargol staining, and molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.</p

    Table_1_A new contribution to the raptorial ciliate genus Lacrymaria (Protista: Ciliophora): a brief review and comprehensive descriptions of two new species from Changjiang Estuary.DOCX

    No full text
    Ciliates serve as excellent indicators for water quality monitoring. However, their utilization is hindered by various taxonomic confusions. The ciliate genus Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic habitats, but its taxonomy has been sparsely investigated using state-of-the-art methods. This study investigated two new Lacrymaria species from Nanhui Wetland, Shanghai, China, using living observation, protargol staining, and molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.</p

    Reformulating the Hydrolytic Enzyme Cocktail of Trichoderma reesei by Combining XYR1 Overexpression and Elimination of Four Major Cellulases to Improve Saccharification of Corn Fiber

    No full text
    The industrial fungus Trichoderma reesei has an outstanding capability of secreting an enzyme cocktail comprising multiple plant biomass-degrading enzymes. Herein, the overexpression of XYR1, the master transactivator controlling (hemi)­cellulase gene expression, was performed in T. reesei lacking four main cellulase-encoding genes. The resultant strain Δ4celOExyr1 was able to produce a dramatically different profile of secretory proteins on soluble glucose or lactose compared with that of the wild-type T. reesei. The Δ4celOExyr1 secretome included cellulases EGIII and BGLI as well as several hemicellulases and nonhydrolytic cellulose degradation-associated proteins that are not preferentially induced in the wild-type T. reesei strain. Δ4celOExyr1 produced a significant amount of α-arabinofuranosidase I on lactose, and the crude enzyme cocktail of Δ4celOExyr1 not only released a considerable quantity of glucose but also exhibited remarkable performance in the hydrolytic release of xylose, arabinose, and mannose from un-pretreated corn fiber. These results showed that the engineered T. reesei strain holds great potential for improving the saccharification efficiency of the hemicellulosic constituents within corn fiber
    corecore