90 research outputs found
Statistics of SNPv numbers of different types.
<p>Statistics of SNPv numbers of different types.</p
Salt tolerance index and numbers of SNPv in different varieties.
<p>Salt tolerance index and numbers of SNPv in different varieties.</p
Distribution on the chromosomes of SNPv of eight varieties and chip SNP.
<p>1~4: the salt sensitive varieties: Hengmian3, GK50, Xinyan96-48, ZhongS9612; 5~8: the salt tolerant varieties: CRI35, Zhong9807, CRI 44, Kanghuangwei164; 9: Illumina Cotton SNP 70K Chip.</p
Numbers of methylation reads in SNPv rich region.
<p>Numbers of methylation reads in SNPv rich region.</p
GO analysis of genes containing chip-SNP, SS-SNPv and ST-SNPv.
<p>GO analysis of genes containing chip-SNP, SS-SNPv and ST-SNPv.</p
Mining and Analysis of SNP in Response to Salinity Stress in Upland Cotton (<i>Gossypium hirsutum</i> L.) - Fig 5
<p>Locations (a) and distribution (b) of SNPr in different chromosomes. The boxes in Fig 5A are the rich region of SNPr.</p
GO analysis of genes neighboring SNPr rich regions.
<p>GO analysis of genes neighboring SNPr rich regions.</p
The possible relation of ROS, DNA methylation, SNPv and SNPr.
<p>The possible relation of ROS, DNA methylation, SNPv and SNPr.</p
DataSheet1.XLSX
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. The disease is preferably controlled by growing resistant cultivars. Wheat cultivar Xiaoyan 6 (XY 6) has been resistant to stripe rust since its release. In the previous studies, XY 6 was found to have higher-temperature seedling-plant (HTSP) resistance. However, the molecular mechanisms of HTSP resistance were not clear. To identify differentially expressed genes (DEGs) involved in HTSP resistance, we sequenced 30 cDNA libraries constructed from XY 6 seedlings exposed to several temperature treatments. Compared to the constant normal (15°C) and higher (20°C) temperature treatments, 1395 DEGs were identified in seedlings exposed to 20°C for 24 h (to activate HTSP resistance) and then kept at 15°C. These DEGs were located on all 21 chromosomes, with 29.2% on A, 41.1% on B and 29.7% on D genomes, by mapping to the Chinese Spring wheat genome. The 1395 DEGs were enriched in ribosome, plant-pathogen interaction and glycerolipid metabolism pathways, and some of them were identified as hub proteins (phosphatase 2C10), resistance protein homologs, WRKY transcription factors and protein kinases. The majority of these genes were up-regulated in HTSP resistance. Based on the differential expression, we found that phosphatase 2C10 and LRR receptor-like serine/threonine protein kinases are particularly interesting as they may be important for HTSP resistance through interacting with different resistance proteins, leading to a hypersensitive response.</p
DataSheet2.XLSX
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat worldwide. The disease is preferably controlled by growing resistant cultivars. Wheat cultivar Xiaoyan 6 (XY 6) has been resistant to stripe rust since its release. In the previous studies, XY 6 was found to have higher-temperature seedling-plant (HTSP) resistance. However, the molecular mechanisms of HTSP resistance were not clear. To identify differentially expressed genes (DEGs) involved in HTSP resistance, we sequenced 30 cDNA libraries constructed from XY 6 seedlings exposed to several temperature treatments. Compared to the constant normal (15°C) and higher (20°C) temperature treatments, 1395 DEGs were identified in seedlings exposed to 20°C for 24 h (to activate HTSP resistance) and then kept at 15°C. These DEGs were located on all 21 chromosomes, with 29.2% on A, 41.1% on B and 29.7% on D genomes, by mapping to the Chinese Spring wheat genome. The 1395 DEGs were enriched in ribosome, plant-pathogen interaction and glycerolipid metabolism pathways, and some of them were identified as hub proteins (phosphatase 2C10), resistance protein homologs, WRKY transcription factors and protein kinases. The majority of these genes were up-regulated in HTSP resistance. Based on the differential expression, we found that phosphatase 2C10 and LRR receptor-like serine/threonine protein kinases are particularly interesting as they may be important for HTSP resistance through interacting with different resistance proteins, leading to a hypersensitive response.</p
- …