1,130 research outputs found
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
This study introduces PV-RNN, a novel variational RNN inspired by the
predictive-coding ideas. The model learns to extract the probabilistic
structures hidden in fluctuating temporal patterns by dynamically changing the
stochasticity of its latent states. Its architecture attempts to address two
major concerns of variational Bayes RNNs: how can latent variables learn
meaningful representations and how can the inference model transfer future
observations to the latent variables. PV-RNN does both by introducing adaptive
vectors mirroring the training data, whose values can then be adapted
differently during evaluation. Moreover, prediction errors during
backpropagation, rather than external inputs during the forward computation,
are used to convey information to the network about the external data. For
testing, we introduce error regression for predicting unseen sequences as
inspired by predictive coding that leverages those mechanisms. The model
introduces a weighting parameter, the meta-prior, to balance the optimization
pressure placed on two terms of a lower bound on the marginal likelihood of the
sequential data. We test the model on two datasets with probabilistic
structures and show that with high values of the meta-prior the network
develops deterministic chaos through which the data's randomness is imitated.
For low values, the model behaves as a random process. The network performs
best on intermediate values, and is able to capture the latent probabilistic
structure with good generalization. Analyzing the meta-prior's impact on the
network allows to precisely study the theoretical value and practical benefits
of incorporating stochastic dynamics in our model. We demonstrate better
prediction performance on a robot imitation task with our model using error
regression compared to a standard variational Bayes model lacking such a
procedure.Comment: The paper is accepted in Neural Computatio
Goal-Directed Planning for Habituated Agents by Active Inference Using a Variational Recurrent Neural Network
It is crucial to ask how agents can achieve goals by generating action plans
using only partial models of the world acquired through habituated
sensory-motor experiences. Although many existing robotics studies use a
forward model framework, there are generalization issues with high degrees of
freedom. The current study shows that the predictive coding (PC) and active
inference (AIF) frameworks, which employ a generative model, can develop better
generalization by learning a prior distribution in a low dimensional latent
state space representing probabilistic structures extracted from well
habituated sensory-motor trajectories. In our proposed model, learning is
carried out by inferring optimal latent variables as well as synaptic weights
for maximizing the evidence lower bound, while goal-directed planning is
accomplished by inferring latent variables for maximizing the estimated lower
bound. Our proposed model was evaluated with both simple and complex robotic
tasks in simulation, which demonstrated sufficient generalization in learning
with limited training data by setting an intermediate value for a
regularization coefficient. Furthermore, comparative simulation results show
that the proposed model outperforms a conventional forward model in
goal-directed planning, due to the learned prior confining the search of motor
plans within the range of habituated trajectories.Comment: 30 pages, 19 figure
From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)
This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness
Predictive Coding for Dynamic Visual Processing: Development of Functional Hierarchy in a Multiple Spatio-Temporal Scales RNN Model
The current paper proposes a novel predictive coding type neural network
model, the predictive multiple spatio-temporal scales recurrent neural network
(P-MSTRNN). The P-MSTRNN learns to predict visually perceived human whole-body
cyclic movement patterns by exploiting multiscale spatio-temporal constraints
imposed on network dynamics by using differently sized receptive fields as well
as different time constant values for each layer. After learning, the network
becomes able to proactively imitate target movement patterns by inferring or
recognizing corresponding intentions by means of the regression of prediction
error. Results show that the network can develop a functional hierarchy by
developing a different type of dynamic structure at each layer. The paper
examines how model performance during pattern generation as well as predictive
imitation varies depending on the stage of learning. The number of limit cycle
attractors corresponding to target movement patterns increases as learning
proceeds. And, transient dynamics developing early in the learning process
successfully perform pattern generation and predictive imitation tasks. The
paper concludes that exploitation of transient dynamics facilitates successful
task performance during early learning periods.Comment: Accepted in Neural Computation (MIT press
Self-organization of action hierarchy and compositionality by reinforcement learning with recurrent neural networks
Recurrent neural networks (RNNs) for reinforcement learning (RL) have shown
distinct advantages, e.g., solving memory-dependent tasks and meta-learning.
However, little effort has been spent on improving RNN architectures and on
understanding the underlying neural mechanisms for performance gain. In this
paper, we propose a novel, multiple-timescale, stochastic RNN for RL. Empirical
results show that the network can autonomously learn to abstract sub-goals and
can self-develop an action hierarchy using internal dynamics in a challenging
continuous control task. Furthermore, we show that the self-developed
compositionality of the network enhances faster re-learning when adapting to a
new task that is a re-composition of previously learned sub-goals, than when
starting from scratch. We also found that improved performance can be achieved
when neural activities are subject to stochastic rather than deterministic
dynamics
Goal-Directed Behavior under Variational Predictive Coding: Dynamic Organization of Visual Attention and Working Memory
Mental simulation is a critical cognitive function for goal-directed behavior
because it is essential for assessing actions and their consequences. When a
self-generated or externally specified goal is given, a sequence of actions
that is most likely to attain that goal is selected among other candidates via
mental simulation. Therefore, better mental simulation leads to better
goal-directed action planning. However, developing a mental simulation model is
challenging because it requires knowledge of self and the environment. The
current paper studies how adequate goal-directed action plans of robots can be
mentally generated by dynamically organizing top-down visual attention and
visual working memory. For this purpose, we propose a neural network model
based on variational Bayes predictive coding, where goal-directed action
planning is formulated by Bayesian inference of latent intentional space. Our
experimental results showed that cognitively meaningful competencies, such as
autonomous top-down attention to the robot end effector (its hand) as well as
dynamic organization of occlusion-free visual working memory, emerged.
Furthermore, our analysis of comparative experiments indicated that
introduction of visual working memory and the inference mechanism using
variational Bayes predictive coding significantly improve the performance in
planning adequate goal-directed actions
- …