315 research outputs found

    Challenges and opportunities of context-aware information access

    Get PDF
    Ubiquitous computing environments embedding a wide range of pervasive computing technologies provide a challenging and exciting new domain for information access. Individuals working in these environments are increasingly permanently connected to rich information resources. An appealing opportunity of these environments is the potential to deliver useful information to individuals either from their previous information experiences or external sources. This information should enrich their life experiences or make them more effective in their endeavours. Information access in ubiquitous computing environments can be made "context-aware" by exploiting the wide range context data available describing the environment, the searcher and the information itself. Realizing such a vision of reliable, timely and appropriate identification and delivery of information in this way poses numerous challenges. A central theme in achieving context-aware information access is the combination of information retrieval with multiple dimensions of available context data. Potential context data sources, include the user's current task, inputs from environmental and biometric sensors, associated with the user's current context, previous contexts, and document context, which can be exploited using a variety of technologies to create new and exciting possibilities for information access

    Integrating social media with existing knowledge and information for crisis response

    Get PDF
    Existing studies on social media in the context of crisis have studied the content of items and their patterns of transmission. However, social media content generated during a crisis will generally be unstructured and only reflect the immediate experiences of the authors, while the volumes of data created can make rapid interpretation very challenging. Crisis situations can be characterized with various expected attributes. In many situations there will be large amounts of information relevant to the situation already available. We argue that existing natural language engineering technologies can be integrated with emerging social media content utilization techniques for more powerful exploitation of social media content in crisis response

    Beyond English text: Multilingual and multimedia information retrieval.

    Get PDF
    Non

    When to cross Over? Cross-language linking using Wikipedia for VideoCLEF 2009

    Get PDF
    We describe Dublin City University (DCU)'s participation in the VideoCLEF 2009 Linking Task. Two approaches were implemented using the Lemur information retrieval toolkit. Both approaches rst extracted a search query from the transcriptions of the Dutch TV broadcasts. One method rst performed search on a Dutch Wikipedia archive, then followed links to corresponding pages in the English Wikipedia. The other method rst translated the extracted query using machine translation and then searched the English Wikipedia collection directly. We found that using the original Dutch transcription query for searching the Dutch Wikipedia yielded better results

    Applying the KISS principle for the CLEF-IP 2010 prior art candidate patent search task

    Get PDF
    We present our experiments and results for the DCU CNGL participation in the CLEF-IP 2010 Candidate Patent Search Task. Our work applied standard information retrieval (IR) techniques to patent search. In addition, a very simple citation extraction method was applied to improve the results. This was our second consecutive participation in the CLEF-IP tasks. Our experiments in 2009 showed that many sophisticated approach to IR do not improve the retrieval effectiveness for this task. For this reason of we decided to apply only simple methods in 2010. These were demonstrated to be highly competitive with other participants. DCU submitted three runs for the Prior Art Candidate Search Task, two of these runs achieved the second and third ranks among the 25 runs submitted by nine different participants. Our best run achieved MAP of 0.203, recall of 0.618, and PRES of 0.523

    Venturing into the labyrinth: the information retrieval challenge of human digital memories

    Get PDF
    Advances in digital capture and storage technologies mean that it is now possible to capture and store one’s entire life experiences in a Human Digital Memory (HDM). However, these vast personal archives are of little benefit if an individual cannot locate and retrieve significant items from them. While potentially offering exciting opportunities to support a user in their activities by providing access to information stored from previous experiences, we believe that the features of HDM datasets present new research challenges for information retrieval which must be addressed if these possibilities are to be realised. Specifically we postulate that effective retrieval from HDMs must exploit the rich sources of context data which can be captured and associated with items stored within them. User’s memories of experiences stored within their memory archive will often be linked to these context features. We suggest how such contextual metadata can be exploited within the retrieval process

    DCU search runs at MediaEval 2012: search and hyperlinking task

    Get PDF
    We describe the runs for our participation in the Search sub-task of the Search and Hyperlinking Task at MediaEval 2012. Our runs are designed to form a retrieval baseline by using time-based segmentation of audio transcripts incorporating pause information and a sliding window to define the retrieval segments boundaries with a standard language modelling information retrieval strategy. Using this baseline system runs based on transcripts provided by LIUM were better for all evaluation metrics, than those using transcripts provided by LIMSI

    Query recovery of short user queries: on query expansion with stopwords

    Get PDF
    User queries to search engines are observed to predominantly contain inflected content words but lack stopwords and capitalization. Thus, they often resemble natural language queries after case folding and stopword removal. Query recovery aims to generate a linguistically well-formed query from a given user query as input to provide natural language processing tasks and cross-language information retrieval (CLIR). The evaluation of query translation shows that translation scores (NIST and BLEU) decrease after case folding, stopword removal, and stemming. A baseline method for query recovery reconstructs capitalization and stopwords, which considerably increases translation scores and significantly increases mean average precision for a standard CLIR task

    What do people want from their lifelogs?

    Get PDF
    The practice of lifelogging potentially consists of automatically capturing and storing a digital record of every piece of information that a person (lifelogger) encounters in their daily experiences. Lifelogging has become an increasingly popular area of research in recent years. Most current lifeloggiing research focuses on techniques for data capture or processing. Current applications of lifelogging technology are usually driven by new technology inventions, creative ideas of researchers, or the special needs of a particular user group, e.g. individuals with memory impairment. To the best of our knowledge, little work has explored potential lifelogs applications from the perspective of the desires of the general public. One of the difficulties of carrying out such a study is the balancing of the information given to the subject regarding lifelog technology to enable them to generate realistic ideas without limiting or directing their imaginations by providing too much specific information. We report a study in which we take a progressive approach where we introduce lifelogging in three stages, and collect the ideas and opinions of a volunteer group of general public participants on techniques for lifelog capture, and applications and functionality

    MediaEval 2011 evaluation campaign

    Get PDF
    MediaEval is an international multimedia benchmarking initiative offering innovative new tasks to the multimedia community. MediaEval 2011 featured tasks incorporating social media search, analysis of affect and location placing of images
    corecore