3 research outputs found

    The Application of Nanoparticles of Waste Tires in Remediating Boron from Desalinated Water

    Get PDF
    A waste tire rubber (WTR) collected from the remains discarded tires has exhibited a noteworthy capacity to adsorb Boron. In the current study, the boron adsorption remediation from water at selected pH values, initial boron concentration, contact time, adsorbent dosage and particle size were examined using the WTR, the chemically modified WTR, and nano-WTR. The adsorption isotherms were best fitted to the Freundlich model with a high correlation coefficient (R2 :0.89-0.99), while the adsorption kinetics were satisfactorily described by the pseudo second order kinetic equation with correlation coefficient (R2: 1).The boron remediation using the WTR, the chemically modified-WTR and nano-WTR at low boron concentration (≤ 17.7 mg/L) were comparable with other adsorbents. The highest adsorption capacities for WTR, chemically modified-WTR and nano-WTR at initial concentration of 17.5 mg/L were 16.7 ± 1.3 mg/g, 13.8 ± 1.9 mg/g and 12.7 ± 1.8mg/g, respectively.This publication was made possible by UREP # (19-171-1-031) from the Qatar National Research Fund (a member of Qatar Foundation)

    Examination of Glycan Profiles from IgG-Depleted Human Immunoglobulins Facilitated by Microscale Affinity Chromatography

    No full text
    Among the most important proteins involved in disease and healing processes are the immunoglobulins (Igs). Although many of the Igs have been studied through proteomics, aside from IgG, immunoglobulin carbohydrates have not been extensively characterized in different states of health. It seems valuable to develop techniques that permit an understanding of changes in the structures and abundances of Ig glycans in the context of disease onset and progression. We have devised a strategy for characterization of the glycans for the Ig classes other than IgG (i.e., A, D, E, and M) that contain kappa light chains that requires only a few microliters of biological material. First, we designed a microcolumn containing recombinant Protein L that was immobilized on macroporous silica particles. A similarly designed Protein G microcolumn was utilized to first perform an online depletion of the IgG from the sample, human blood serum, and thereby facilitate enrichment of the other Igs. Even though only 3 μL of serum was used in these analyses, we were able to recover a significantly enriched fraction of non-IgG immunoglobulins. The enrichment properties of the Protein L column were characterized using a highly sensitive label-free quantitative proteomics LC-MS/MS approach, and the glycomic profiles of enriched immunoglobulins were measured by MALDI-TOF MS. As a proof of principle, a comparative study was conducted using blood serum from a small group of lung cancer patients and a group of age-matched cancer-free individuals to demonstrate that the method is suitable for investigation of glycosylation changes in disease. The results were in agreement with a glycomic investigation of whole blood serum from a much larger lung cancer cohort

    Complementary Glycomic Analyses of Sera Derived from Colorectal Cancer Patients by MALDI-TOF-MS and Microchip Electrophoresis

    No full text
    Colorectal cancer is the fourth most prevalent cancer in the United States, yet there are no reliable noninvasive early screening methods available. Serum-based glycomic profiling has the necessary sensitivity and specificity to distinguish disease states and provide diagnostic potential for this deadly form of cancer. We applied microchip electrophoresis and MALDI-TOF-MS-based glycomic procedures to 20 control serum samples and 42 samples provided by patients diagnosed with colorectal cancer. Within the identified glycans, the position of fucose units was located to quantitate possible changes of fucosyl isomeric species associated with the pathological condition. MALDI-MS data revealed several fucosylated tri- and tetra-antennary glycans which were significantly elevated in their abundance levels in the cancer samples and distinguished the control samples from the colorectal cancer cohort in the comprehensive profiles. When compared to other cancers studied previously, some unique changes appear to be associated with colorectal cancer, being primarily associated with fucosyl isomers. Through MS and microchip electrophoresis-based glycomic methods, several potential biomarkers were identified to aid in the diagnosis and differentiation of colorectal cancer. With its unique capability to resolve isomers, microchip electrophoresis can yield complementary analytical information to MS-based profiling
    corecore