69,872 research outputs found
Ferromagnetic Type-II Weyl Semimetal in Pyrite Chromium Dioxide
Magnetic topological materials have recently drawn significant importance and
interest, due to their topologically nontrivial electronic structure within
spontaneous magnetic moments and band inversion. Based on first-principles
calculations, we propose that chromium dioxide, in its ferromagnetic pyrite
structure, can realize one pair of type-II Weyl points between the th and
th bands, where is the total number of valence electrons per unit
cell. Other Weyl points between the th and th bands also appear close
to the Fermi level due to the complex topological electronic band structure.
The symmetry analysis elucidates that the Weyl points arise from a
triply-degenerate point splitting due to the mirror reflection symmetry broken
in the presence of spin-orbital coupling, which is equivalent to an applied
magnetic field along the direction of magnetization. The Weyl points located on
the magnetic axis are protected by the three-fold rotational symmetry. The
corresponding Fermi arcs projected on both (001) and (110) surfaces are
calculated as well and observed clearly. This finding opens a wide range of
possible experimental realizations of type-II Weyl fermions in a system with
time-reversal breaking.Comment: 8 pages, 5 figure
Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: A model of walking/conformal Technicolor
QCD with two flavours of massless colour-sextet quarks is considered as a
model for conformal/walking Technicolor. If this theory possess an infrared
fixed point, as indicated by 2-loop perturbation theory, it is a
conformal(unparticle) field theory. If, on the other hand, a chiral condensate
forms on the weak-coupling side of this would-be fixed point, the theory
remains confining. The only difference between such a theory and regular QCD is
that there is a range of momentum scales over which the coupling constant runs
very slowly (walks). In this first analysis, we simulate the lattice version of
QCD with two flavours of staggered quarks at finite temperatures on lattices of
temporal extent and 6. The deconfinement and chiral-symmetry
restoration couplings give us a measure of the scales associated with
confinement and chiral-symmetry breaking. We find that, in contrast to what is
seen with fundamental quarks, these transition couplings are very different.
for each of these transitions increases significantly from
and as expected for the finite temperature transitions of an
asymptotically-free theory. This suggests a walking rather than a conformal
behaviour, in contrast to what is observed with Wilson quarks. In contrast to
what is found for fundamental quarks, the deconfined phase exhibits states in
which the Polyakov loop is oriented in the directions of all three cube roots
of unity. At very weak coupling the states with complex Polyakov loops undergo
a transition to a state with a real, negative Polyakov loop.Comment: 21 pages, 9 figures, Revtex with postscript figures. One extra
reference was added; text is unchanged. Corrected typographical erro
Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study
In order to gain insights into the origin of colossal magneto-resistance
(CMR) in manganese oxides, we performed a ^{139}La NMR study in the
double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie
temperature T_C=126 K, applying a magnetic field induces a long-range
ferromagnetic order that persists up to T=330 K. The critical field at which
the induced magnetic moment is saturated coincides with the field at which the
CMR effect reaches to a maximum. Our results therefore indicate that the CMR
observed above T_C in this compound is due to the field-induced ferromagnetism
that produces a metallic state via the double exchange interaction
Effect of mass asymmetry on the mass dependence of balance energy
We demonstrate the role of the mass asymmetry on the balance energy (Ebal) by
studying asymmetric reactions throughout the periodic table and over entire
colliding geometry. Our results, which are almost independent of the system
size and as well as of the colliding geometries indicate a sizeable effect of
the asymmetry of the reaction on the balance energy.Comment: Journal of Physics - Conference Series - Online end of March (2011
Recommended from our members
Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants
Demand responsive industrial loads with high thermal inertia have potential to provide ancillary service for frequency regulation in the power market. To capture the benefit, this study proposes a new hierarchical framework to coordinate the demand responsive industrial loads with thermal power plants in an industrial park for secondary frequency control. In the proposed framework, demand responsive loads and generating resources are coordinated for optimal dispatch in two-time scales: (1) the regulation reserve of the industrial park is optimally scheduled in a day-ahead manner. The stochastic regulation signal is replaced by the specific extremely trajectories. Furthermore, the extremely trajectories are achieved by the day-ahead predicted regulation mileage. The resulting benefit is to transform the stochastic reserve scheduling problem into a deterministic optimization; (2) a model predictive control strategy is proposed to dispatch the industry park in real time with an objective to maximize the revenue. The proposed technology is tested using a real-world industrial electrolysis power system based upon Pennsylvania, Jersey, and Maryland (PJM) power market. Various scenarios are simulated to study the performance of the proposed approach to enable industry parks to provide ancillary service into the power market. The simulation results indicate that an industrial park with a capacity of 500 MW can provide up to 40 MW ancillary service for participation in the secondary frequency regulation. The proposed strategy is demonstrated to be capable of maintaining the economic and secure operation of the industrial park while satisfying performance requirements from the real world regulation market
Analysis of Thermal Environment of Open Community Streets in Winter in Northern China
The long winter time and the harsh outdoor environment cause many inconveniences of the outdoor activities to urban residents in severe cold areas. Therefore, it is urgent to study and improve the thermal environment in urban residential streets. This paper focuses on winter thermal environment of streets in open communities of northern China, by carrying out field measurements according to the characteristics of cold climate and urban residential areas. The results show that the aspect ratios of streets can directly affect their thermal environment. With the aspect ratio increases, the air temperature decreases and the wind speed increases. At the same time, facade openings can make the average globe temperature significantly increased in the streets. This paper provides basic data for the further study of thermal environment in urban streets and the optimization design of street spaces
- …
