730 research outputs found

    What Can Help Pedestrian Detection?

    Full text link
    Aggregating extra features has been considered as an effective approach to boost traditional pedestrian detection methods. However, there is still a lack of studies on whether and how CNN-based pedestrian detectors can benefit from these extra features. The first contribution of this paper is exploring this issue by aggregating extra features into CNN-based pedestrian detection framework. Through extensive experiments, we evaluate the effects of different kinds of extra features quantitatively. Moreover, we propose a novel network architecture, namely HyperLearner, to jointly learn pedestrian detection as well as the given extra feature. By multi-task training, HyperLearner is able to utilize the information of given features and improve detection performance without extra inputs in inference. The experimental results on multiple pedestrian benchmarks validate the effectiveness of the proposed HyperLearner.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201

    Towards Distributed OPF using ALADIN

    Full text link
    The present paper discusses the application of the recently proposed Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method to non-convex AC Optimal Power Flow Problems (OPF) in a distributed fashion. In contrast to the often used Alternating Direction of Multipliers Method (ADMM), ALADIN guarantees locally quadratic convergence for AC OPF. Numerical results for 5 to 300 bus test cases indicate that ALADIN is able to outperform ADMM and to reduce the number of iterations by about one order of magnitude. We compare ALADIN to numerical results for ADMM documented in the literature. The improved convergence speed comes at the cost of increasing the communication effort per iteration. Therefore, we propose a variant of ALADIN that uses inexact Hessians to reduce communication. Additionally, we provide a detailed comparison of these ALADIN variants to ADMM from an algorithmic and communication perspective. Moreover, we prove that ALADIN converges locally at quadratic rate even for the relevant case of suboptimally solved local NLPs

    FoveaBox: Beyond Anchor-based Object Detector

    Full text link
    We present FoveaBox, an accurate, flexible, and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations. In FoveaBox, an instance is assigned to adjacent feature levels to make the model more accurate.We demonstrate its effectiveness on standard benchmarks and report extensive experimental analysis. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance on the standard COCO and Pascal VOC object detection benchmark. More importantly, FoveaBox avoids all computation and hyper-parameters related to anchor boxes, which are often sensitive to the final detection performance. We believe the simple and effective approach will serve as a solid baseline and help ease future research for object detection. The code has been made publicly available at https://github.com/taokong/FoveaBox .Comment: IEEE Transactions on Image Processing, code at: https://github.com/taokong/FoveaBo

    Distributed State Estimation for AC Power Systems using Gauss-Newton ALADIN

    Full text link
    This paper proposes a structure exploiting algorithm for solving non-convex power system state estimation problems in distributed fashion. Because the power flow equations in large electrical grid networks are non-convex equality constraints, we develop a tailored state estimator based on Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method, which can handle the nonlinearities efficiently. Here, our focus is on using Gauss-Newton Hessian approximations within ALADIN in order to arrive at at an efficient (computationally and communicationally) variant of ALADIN for network maximum likelihood estimation problems. Analyzing the IEEE 30-Bus system we illustrate how the proposed algorithm can be used to solve highly non-trivial network state estimation problems. We also compare the method with existing distributed parameter estimation codes in order to illustrate its performance

    Repulsion Loss: Detecting Pedestrians in a Crowd

    Full text link
    Detecting individual pedestrians in a crowd remains a challenging problem since the pedestrians often gather together and occlude each other in real-world scenarios. In this paper, we first explore how a state-of-the-art pedestrian detector is harmed by crowd occlusion via experimentation, providing insights into the crowd occlusion problem. Then, we propose a novel bounding box regression loss specifically designed for crowd scenes, termed repulsion loss. This loss is driven by two motivations: the attraction by target, and the repulsion by other surrounding objects. The repulsion term prevents the proposal from shifting to surrounding objects thus leading to more crowd-robust localization. Our detector trained by repulsion loss outperforms all the state-of-the-art methods with a significant improvement in occlusion cases.Comment: Accepted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 201

    MegDet: A Large Mini-Batch Object Detector

    Full text link
    The improvements in recent CNN-based object detection works, from R-CNN [11], Fast/Faster R-CNN [10, 31] to recent Mask R-CNN [14] and RetinaNet [24], mainly come from new network, new framework, or novel loss design. But mini-batch size, a key factor in the training, has not been well studied. In this paper, we propose a Large MiniBatch Object Detector (MegDet) to enable the training with much larger mini-batch size than before (e.g. from 16 to 256), so that we can effectively utilize multiple GPUs (up to 128 in our experiments) to significantly shorten the training time. Technically, we suggest a learning rate policy and Cross-GPU Batch Normalization, which together allow us to successfully train a large mini-batch detector in much less time (e.g., from 33 hours to 4 hours), and achieve even better accuracy. The MegDet is the backbone of our submission (mmAP 52.5%) to COCO 2017 Challenge, where we won the 1st place of Detection task
    corecore