441 research outputs found
State Convergence of Dissipative Nonlinear Systems given Bounded-Energy Input Signal
In this paper, we show the state convergence of a class of dissipative nonlinear systems given bounded-energy input functions u : R(+) -> R(m), where the energy function is related to the dissipation inequality (or the supply rate)
Transverse exponential stability and applications
We investigate how the following properties are related to each other: i)-A
manifold is "transversally" exponentially stable; ii)-The "transverse"
linearization along any solution in the manifold is exponentially stable;
iii)-There exists a field of positive definite quadratic forms whose
restrictions to the directions transversal to the manifold are decreasing along
the flow. We illustrate their relevance with the study of exponential
incremental stability. Finally, we apply these results to two control design
problems, nonlinear observer design and synchronization. In particular, we
provide necessary and sufficient conditions for the design of nonlinear
observer and of nonlinear synchronizer with exponential convergence property
Complex and detailed balancing of chemical reaction networks revisited
The characterization of the notions of complex and detailed balancing for
mass action kinetics chemical reaction networks is revisited from the
perspective of algebraic graph theory, in particular Kirchhoff's Matrix Tree
theorem for directed weighted graphs. This yields an elucidation of previously
obtained results, in particular with respect to the Wegscheider conditions, and
a new necessary and sufficient condition for complex balancing, which can be
verified constructively.Comment: arXiv admin note: substantial text overlap with arXiv:1502.0224
Distributed Adaptive Formation Control for Uncertain Point Mass Agents with Mixed Dimensional Space
We propose distance-based distributed adaptive formation control of point mass agents in port-Hamiltonian (pH) framework that can deal with parameter uncertainties and with mixed dimensional space (2D, 3D or mixed 2D/3D). Adaptive control mechanism is subsequently proposed to maintain formation of uncertain pH systems with unknown damping parameters. Numerical simulations are presented for both known and uncertain point mass agents in mixed 2D/3D space
Distributed scaling control of rigid formations
Recently it has been reported that biased range-measurements among
neighboring agents in the gradient distance-based formation control can lead to
predictable collective motion. In this paper we take advantage of this effect
and by introducing distributed parameters to the prescribed inter-distances we
are able to manipulate the steady-state motion of the formation. This
manipulation is in the form of inducing simultaneously the combination of
constant translational and angular velocities and a controlled scaling of the
rigid formation. While the computation of the distributed parameters for the
translational and angular velocities is based on the well-known graph rigidity
theory, the parameters responsible for the scaling are based on some recent
findings in bearing rigidity theory. We carry out the stability analysis of the
modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year
201
- …