21 research outputs found

    Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes

    No full text
    We report on the preparation, atomic resolution imaging, and element selective damage mechanism in atomically thin boron nitride membranes. Flakes of less than 10 layers are prepared by mechanical cleavage and are thinned down to single layers in a high-energy electron beam. At our beam energies, we observe a highly selective sputtering of only one of the elements and predominantly at the exit surface of the specimen, and then subsequent removal of atoms next to a defect. Triangle-shaped holes appear in accordance with the crystallographic orientation of each layer. Defects are compared to those observed in graphene membranes. The observation of clean single-layer membranes shows that hexagonal boron nitride is a further material (in addition to graphene) that can exist in a quasi-two-dimensional allotrope without the need for a substrate

    Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes

    No full text
    We report on the preparation, atomic resolution imaging, and element selective damage mechanism in atomically thin boron nitride membranes. Flakes of less than 10 layers are prepared by mechanical cleavage and are thinned down to single layers in a high-energy electron beam. At our beam energies, we observe a highly selective sputtering of only one of the elements and predominantly at the exit surface of the specimen, and then subsequent removal of atoms next to a defect. Triangle-shaped holes appear in accordance with the crystallographic orientation of each layer. Defects are compared to those observed in graphene membranes. The observation of clean single-layer membranes shows that hexagonal boron nitride is a further material (in addition to graphene) that can exist in a quasi-two-dimensional allotrope without the need for a substrate

    Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes

    No full text
    We report on the preparation, atomic resolution imaging, and element selective damage mechanism in atomically thin boron nitride membranes. Flakes of less than 10 layers are prepared by mechanical cleavage and are thinned down to single layers in a high-energy electron beam. At our beam energies, we observe a highly selective sputtering of only one of the elements and predominantly at the exit surface of the specimen, and then subsequent removal of atoms next to a defect. Triangle-shaped holes appear in accordance with the crystallographic orientation of each layer. Defects are compared to those observed in graphene membranes. The observation of clean single-layer membranes shows that hexagonal boron nitride is a further material (in addition to graphene) that can exist in a quasi-two-dimensional allotrope without the need for a substrate

    Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes

    No full text
    We report on the preparation, atomic resolution imaging, and element selective damage mechanism in atomically thin boron nitride membranes. Flakes of less than 10 layers are prepared by mechanical cleavage and are thinned down to single layers in a high-energy electron beam. At our beam energies, we observe a highly selective sputtering of only one of the elements and predominantly at the exit surface of the specimen, and then subsequent removal of atoms next to a defect. Triangle-shaped holes appear in accordance with the crystallographic orientation of each layer. Defects are compared to those observed in graphene membranes. The observation of clean single-layer membranes shows that hexagonal boron nitride is a further material (in addition to graphene) that can exist in a quasi-two-dimensional allotrope without the need for a substrate

    Aligned Stacking of Nanopatterned 2D Materials for High-Resolution 3D Device Fabrication

    No full text
    Two-dimensional materials can be combined by placing individual layers on top of each other, so that they are bound only by their van der Waals interaction. The sequence of layers can be chosen arbitrarily, enabling an essentially atomic-level control of the material and thereby a wide choice of properties along one dimension. However, simultaneous control over the structure in the in-plane directions is so far still rather limited. Here, we combine spatially controlled modifications of 2D materials, using focused electron irradiation or electron beam induced etching, with the layer-by-layer assembly of van der Waals heterostructures. The presented assembly process makes it possible to structure each layer with an arbitrary pattern prior to the assembly into the heterostructure. Moreover, it enables a stacking of the layers with accurate lateral alignment, with an accuracy of currently 10 nm, under observation in an electron microscope. Together, this enables the fabrication of almost arbitrary 3D structures with highest spatial resolution

    Aligned Stacking of Nanopatterned 2D Materials for High-Resolution 3D Device Fabrication

    No full text
    Two-dimensional materials can be combined by placing individual layers on top of each other, so that they are bound only by their van der Waals interaction. The sequence of layers can be chosen arbitrarily, enabling an essentially atomic-level control of the material and thereby a wide choice of properties along one dimension. However, simultaneous control over the structure in the in-plane directions is so far still rather limited. Here, we combine spatially controlled modifications of 2D materials, using focused electron irradiation or electron beam induced etching, with the layer-by-layer assembly of van der Waals heterostructures. The presented assembly process makes it possible to structure each layer with an arbitrary pattern prior to the assembly into the heterostructure. Moreover, it enables a stacking of the layers with accurate lateral alignment, with an accuracy of currently 10 nm, under observation in an electron microscope. Together, this enables the fabrication of almost arbitrary 3D structures with highest spatial resolution

    Probing from Both Sides: Reshaping the Graphene Landscape via Face-to-Face Dual-Probe Microscopy

    No full text
    In two-dimensional samples, all atoms are at the surface and thereby exposed for probing and manipulation by physical or chemical means from both sides. Here, we show that we can access the same point on both surfaces of a few-layer graphene membrane simultaneously, using a dual-probe scanning tunneling microscopy (STM) setup. At the closest point, the two probes are separated only by the thickness of the graphene membrane. This allows us for the first time to directly measure the deformations induced by one STM probe on a free-standing membrane with an independent second probe. We reveal different regimes of stability of few-layer graphene and show how the STM probes can be used as tools to shape the membrane in a controlled manner. Our work opens new avenues for the study of mechanical and electronic properties of two-dimensional materials

    Transformations of Carbon Adsorbates on Graphene Substrates under Extreme Heat

    No full text
    We describe new phenomena of structural reorganization of carbon adsorbates as revealed by in situ atomic-resolution transmission electron microscopy (TEM) performed on specimens at extreme temperatures. In our investigations, a graphene sheet serves as both a quasi-transparent substrate for TEM and as an in situ heater. The melting of gold nanoislands deposited on the substrate surface is used to evaluate the local temperature profile. At annealing temperatures around 1000 K, we observe the transformation of physisorbed hydrocarbon adsorbates into amorphous carbon monolayers and the initiation of crystallization. At temperatures exceeding 2000 K the transformation terminates in the formation of a completely polycrystalline graphene state. The resulting layers are bounded by free edges primarily in the armchair configuration

    Transformations of Carbon Adsorbates on Graphene Substrates under Extreme Heat

    No full text
    We describe new phenomena of structural reorganization of carbon adsorbates as revealed by in situ atomic-resolution transmission electron microscopy (TEM) performed on specimens at extreme temperatures. In our investigations, a graphene sheet serves as both a quasi-transparent substrate for TEM and as an in situ heater. The melting of gold nanoislands deposited on the substrate surface is used to evaluate the local temperature profile. At annealing temperatures around 1000 K, we observe the transformation of physisorbed hydrocarbon adsorbates into amorphous carbon monolayers and the initiation of crystallization. At temperatures exceeding 2000 K the transformation terminates in the formation of a completely polycrystalline graphene state. The resulting layers are bounded by free edges primarily in the armchair configuration

    Transformations of Carbon Adsorbates on Graphene Substrates under Extreme Heat

    No full text
    We describe new phenomena of structural reorganization of carbon adsorbates as revealed by in situ atomic-resolution transmission electron microscopy (TEM) performed on specimens at extreme temperatures. In our investigations, a graphene sheet serves as both a quasi-transparent substrate for TEM and as an in situ heater. The melting of gold nanoislands deposited on the substrate surface is used to evaluate the local temperature profile. At annealing temperatures around 1000 K, we observe the transformation of physisorbed hydrocarbon adsorbates into amorphous carbon monolayers and the initiation of crystallization. At temperatures exceeding 2000 K the transformation terminates in the formation of a completely polycrystalline graphene state. The resulting layers are bounded by free edges primarily in the armchair configuration
    corecore