518 research outputs found
A probabilistic approach to 21st century regional sea-level projections using RCP and High-end scenarios
Sea-level change is an integrated climate system response due to changes in radiative forcing, anthropogenic land-water use and land-motion. Projecting sea-level at a global and regional scale requires a subset of projections - one for each sea-level component given a particular climate-change scenario. We construct relative sea-level projections through the 21st century for RCP 4.5, RCP 8.5 and High-end (RCP 8.5 with increased ice-sheet contribution) scenarios by aggregating spatial projections of individual sea-level components in a probabilistic manner. Most of the global oceans adhere to the projected global average sea level change within 5 cm throughout the century for all scenarios; however coastal regions experience localised effects due to the non-uniform spatial patterns of individual components. This can result in local projections that are 10âČs of centimetres different from the global average by 2100. Early in the century, RSL projections are consistent across all scenarios, however from the middle of the century the patterns of RSL for RCP scenarios deviate from the High-end where the contribution from Antarctica dominates. Similarly, the uncertainty in projected sea-level is dominated by an uncertain Antarctic fate. We also explore the effect upon projections of, treating CMIP5 model ensembles as normally distributed when they might not be, correcting CMIP5 model output for internal variability using different polynomials and using different unloading patterns of ice for the Greenland and Antarctic ice sheets
Coastal sea level rise with warming above 2°C
Two degrees of global warming above the preindustrial level is widely suggested as an appropriate threshold beyond which climate change risks become unacceptably high. This â2 °Câ threshold is likely to be reached between 2040 and 2050 for both Representative Concentration Pathway (RCP) 8.5 and 4.5. Resulting sea level rises will not be globally uniform, due to ocean dynamical processes and changes in gravity associated with water mass redistribution. Here we provide probabilistic sea level rise projections for the global coastline with warming above the 2 °C goal. By 2040, with a 2 °C warming under the RCP8.5 scenario, more than 90% of coastal areas will experience sea level rise exceeding the global estimate of 0.2 m, with up to 0.4 m expected along the Atlantic coast of North America and Norway. With a 5 °C rise by 2100, sea level will rise rapidly, reaching 0.9 m (median), and 80% of the coastline will exceed the global sea level rise at the 95th percentile upper limit of 1.8 m. Under RCP8.5, by 2100, New York may expect rises of 1.09 m, Guangzhou may expect rises of 0.91 m, and Lagos may expect rises of 0.90 m, with the 95th percentile upper limit of 2.24 m, 1.93 m, and 1.92 m, respectively. The coastal communities of rapidly expanding cities in the developing world, and vulnerable tropical coastal ecosystems, will have a very limited time after midcentury to adapt to sea level rises unprecedented since the dawn of the Bronze Age
Relative sea-level data from southwest Scotland constrain meltwater-driven sea-level jumps prior to the 8.2Â kyr BP event
The most significant climate cooling of the Holocene is centred on 8.2 kyr BP (the â8.2 eventâ). Its cause is widely attributed to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) associated with the sudden drainage of Laurentide proglacial Lakes Agassiz and Ojibway, but model simulations have difficulty reproducing the event with a single-pulse scenario of freshwater input. Several lines of evidence point to multiple episodes of freshwater release from the decaying Laurentide Ice Sheet (LIS) between âŒ8900 and âŒ8200 cal yr BP, yet the precise number, timing and magnitude of these events â critical constraints for AMOC simulations â are far from resolved. Here we present a high-resolution relative sea level (RSL) record for the period 8800 to 7800 cal yr BP developed from estuarine and salt-marsh deposits in SW Scotland. We find that RSL rose abruptly in three steps by 0.35 m, 0.7 m and 0.4 m (mean) at 8760â8640, 8595â8465, 8323â8218 cal yr BP respectively. The timing of these RSL steps correlate closely with short-lived events expressed in North Atlantic proxy climate and oceanographic records, providing evidence of at least three distinct episodes of enhanced meltwater discharge from the decaying LIS prior to the 8.2 event. Our observations can be used to test the fidelity of both climate and ice-sheet models in simulating abrupt change during the early Holocene
Strong Decays of Strange Charmed P-Wave Mesons
Goldstone boson decays of P-wave mesons are studied within the
framework of Heavy Hadron Chiral Perturbation Theory. We first analyze the
simplest single kaon decays of these strange charmed mesons. We derive a model
independent prediction for the width of and use experimental
information on to constrain the S-wave contribution to decay.
Single and double pion decay modes are then discussed and shown to be
significantly restricted by isospin conservation. We conclude that the pion
channels may offer the best hope for detecting one strange member of an
otherwise invisible P-wave flavor multiplet.Comment: 16 pages, 2 updated figures not included but available upon request,
CALT-68-1902. (Revised estimates for error on width and for isospin
violating neutral pion decay of .
Why, what, and how? case study on law, risk, and decision making as necessary themes in built environment teaching
The paper considers (and defends) the necessity of including legal studies as a core part of built environment undergraduate and postgraduate curricula. The writer reflects upon his own experience as a lawyer working alongside and advising built environment professionals in complex land remediation and site safety management situations in the United Kingdom and explains how themes of liability, risk, and decision making can be integrated into a practical simulation in order to underpin more traditional lecture-based law teaching. Through reflection upon the writer's experiments with simulation-based teaching, the paper suggests some innovations that may better orientate law teaching to engage these themes and, thereby, enhance the relevance of law studies to the future needs of built environment professionals in practice.</p
Assessing cognitive dysfunction in Parkinson's disease: An online tool to detect visuo-perceptual deficits.
BackgroundPeople with Parkinson's disease (PD) who develop visuo-perceptual deficits are at higher risk of dementia, but we lack tests that detect subtle visuo-perceptual deficits and can be performed by untrained personnel. Hallucinations are associated with cognitive impairment and typically involve perception of complex objects. Changes in object perception may therefore be a sensitive marker of visuo-perceptual deficits in PD.ObjectiveWe developed an online platform to test visuo-perceptual function. We hypothesised that (1) visuo-perceptual deficits in PD could be detected using online tests, (2) object perception would be preferentially affected, and (3) these deficits would be caused by changes in perception rather than response bias.MethodsWe assessed 91 people with PD and 275 controls. Performance was compared using classical frequentist statistics. We then fitted a hierarchical Bayesian signal detection theory model to a subset of tasks.ResultsPeople with PD were worse than controls at object recognition, showing no deficits in other visuo-perceptual tests. Specifically, they were worse at identifying skewed images (Pâ<â.0001); at detecting hidden objects (Pâ=â.0039); at identifying objects in peripheral vision (Pâ<â.0001); and at detecting biological motion (Pâ=â.0065). In contrast, people with PD were not worse at mental rotation or subjective size perception. Using signal detection modelling, we found this effect was driven by change in perceptual sensitivity rather than response bias.ConclusionsOnline tests can detect visuo-perceptual deficits in people with PD, with object recognition particularly affected. Ultimately, visuo-perceptual tests may be developed to identify at-risk patients for clinical trials to slow PD dementia. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society
BMQ
BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals. Pages 49-52, v17n2, provided courtesy of Howard Gotlieb Archival Research Center
Doing Biopolitics Differently? Radical Potential in the Post-2015 MDG and SDG Debates
Post print On institutional repository or subject-based repository after a 18 months embargo, withdraw
Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard
Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the worldâs coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34â76âcm under a moderate-emission-mitigation-policy scenario and of 58â172âcm under a business as usual scenario. Rising ESLs are mostly driven by thermal expansion, followed by contributions from ice mass-loss from glaciers, and ice-sheets in Greenland and Antarctica. Under these scenarios ESL rise would render a large part of the tropics exposed annually to the present-day 100-year event from 2050. By the end of this century this applies to most coastlines around the world, implying unprecedented flood risk levels unless timely adaptation measures are taken
BMQ
BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals
- âŠ