9 research outputs found
LD Hub:a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
Motivation: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. Availability and implementation: The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/<br/
The further study of sliding mode observers
In this report, our new research results on the error sign propagation, the finite error convergence and the learning mechanism of the sliding mode observer systems, developed by Slotine et al. in 1980s, for a class of high-order nonlinear systems are presented. It will be shown that, as the switching component of the output tracking error, between the output estimate and the measurable system output, drives the output tracking error dynamics (leading subsystem) to converge to zero in a finite time, this switching component is also used as the driving force of the other subsystems (followers) in the observer error dynamics, to force them to learn the dynamic behaviours of the leading subsystem, for achieving the finite error convergence. Our new findings are that (i) on the sliding surfaces, the signs of the error derivatives of the followers are the same as the one of the leading subsystem; (ii) The error derivatives of all followers can be treated as the modulations of the error derivatives of leading subsystem by the bounded positive functions. Based on these observations and considerations, the error sign propagation rule on the sliding surfaces is formulated, the supervised learning mechanism embedded in the sliding mode observer systems is explored in detail, and the finite error convergence of the sliding mode observer systems is also proved
Tailored Raman-resonant four-wave-mixing process
Nonlinear optical processes are strongly dominated by phase relationships among electromagnetic fields that are relevant to its optical process. In this paper, we theoretically and experimentally show, as a typical example, that in a Raman-resonant four-wave-mixing process, the first anti-Stokes and Stokes generations can be tailored to a variety of forms by manipulating the phase relationships among the relevant electromagnetic fields
DS_10.1177_0022034518779546 – Supplemental material for Epithelial <i>Cdc42</i> Deletion Induced Enamel Organ Defects and Cystogenesis
<p>Supplemental material, DS_10.1177_0022034518779546 for Epithelial <i>Cdc42</i> Deletion Induced Enamel Organ Defects and Cystogenesis by J. Zheng, X. Nie, L. He, A. J. Yoon, L. Wu, X. Zhang, M. Vats, M.D. Schiff, L. Xiang, Z. Tian, J. Ling and J.J. Mao in Journal of Dental Research</p
HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics.
MOTIVATION: Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients (r(2)) of the variants. However, haplotypes rather than pairwise r(2), are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this paper, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel. RESULTS: Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits (GIANT) height data, HAPRAP performs well with a small training sample size (N<2000) while other methods become suboptimal. Moreover, HAPRAP's performance is not affected substantially by SNPs with low minor allele frequencies. We applied the method to existing quantitative trait and binary outcome meta-analyses (human height, QTc interval and gallbladder disease); all previous reported association signals were replicated and two additional variants were independently associated with human height. Due to the growing availability of summary level data, the value of HAPRAP is likely to increase markedly for future analyses (e.g. functional prediction and identification of instruments for Mendelian randomization). AVAILABILITY: The HAPRAP package and documentation are available online: http://apps.biocompute.org.uk/haprap
LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis.
MOTIVATION: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. RESULTS: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. AVAILABILITY AND IMPLEMENTATION: The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/ CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online
GNOSIS: A novel near-infrared OH suppression unit at the AAT
GNOSIS has provided the first on-telescope demonstration of a concept to utilize complex aperioidc fiber Bragg gratings to suppress the 103 brightest atmospheric hydroxyl emission doublets between 1.47-1.7 μm. The unit is designed to be used at the 3.9-meter Anglo-Australian Telescope (AAT) feeding the IRIS2 spectrograph. Unlike previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion. We present the results of laboratory and on-sky tests from instrument commissioning. These tests reveal excellent suppression performance by the gratings and high inter-notch throughput, which combine to produce high fidelity OH-free spectra
Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study
Importance: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. Objective: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. Data Sources: Genomewide association studies (GWAS) published up to January 15, 2015. Study Selection: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. Data Extraction and Synthesis: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. Main Outcomes and Measures: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. Results: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [95% CI, 0.05-0.15]). Conclusions and Relevance: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases
