109 research outputs found

    Computer simulation of uniformly heated granular fluids

    Full text link
    Direct Monte Carlo simulations of the Enskog-Boltzmann equation for a spatially uniform system of smooth inelastic spheres are performed. In order to reach a steady state, the particles are assumed to be under the action of an external driving force which does work to compensate for the collisional loss of energy. Three different types of external driving are considered: (a) a stochastic force, (b) a deterministic force proportional to the particle velocity and (c) a deterministic force parallel to the particle velocity but constant in magnitude. The Enskog-Boltzmann equation in case (b) is fully equivalent to that of the homogeneous cooling state (where the thermal velocity monotonically decreases with time) when expressed in terms of the particle velocity relative to the thermal velocity. Comparison of the simulation results for the fourth cumulant and the high energy tail with theoretical predictions derived in cases (a) and (b) [T. P. C. van Noije and M. H. Ernst, Gran. Matt. 1, 57 (1998)] shows a good agreement. In contrast to these two cases, the deviation from the Maxwell-Boltzmann distribution is not well represented by Sonine polynomials in case (c), even for low dissipation. In addition, the high energy tail exhibits an underpopulation effect in this case.Comment: 18 pages (LaTex), 10 figures (eps); to be published in Granular Matte

    DSMC evaluation of the Navier-Stokes shear viscosity of a granular fluid

    Full text link
    A method based on the simple shear flow modified by the introduction of a deterministic non-conservative force and a stochastic process is proposed to measure the Navier-Stokes shear viscosity in a granular fluid described by the Enskog equation. The method is implemented in DSMC simulations for a wide range of values of dissipation and density. It is observed that, after a certain transient period, the system reaches a hydrodynamic stage which tends to the Navier-Stokes regime for long times. The results are compared with theoretical predictions obtained from the Chapman-Enskog method in the leading Sonine approximation, showing quite a good agreement, even for strong dissipation.Comment: 6 pages, 4 figures; to appear in Rarefied Gas Dynamics: 24th International Symposium (AIP Conference Proceedings

    Long Wavelength Instability for Uniform Shear Flow

    Full text link
    Uniform Shear Flow is a prototype nonequilibrium state admitting detailed study at both the macroscopic and microscopic levels via theory and computer simulation. It is shown that the hydrodynamic equations for this state have a long wavelength instability. This result is obtained first from the Navier-Stokes equations and shown to apply at both low and high densities. Next, higher order rheological effects are included using a model kinetic theory. The results are compared favorably to those from Monte Carlo simulation.Comment: 12 pages, including 2 figure

    The Breakdown of Kinetic Theory in Granular Shear Flows

    Full text link
    We examine two basic assumptions of kinetic theory-- binary collisions and molecular chaos-- using numerical simulations of sheared granular materials. We investigate a wide range of densities and restitution coefficients and demonstrate that kinetic theory breaks down at large density and small restitution coefficients. In the regimes where kinetic theory fails, there is an associated emergence of clusters of spatially correlated grains

    Monosized dripping mode of axisymmetric flow focusing

    Get PDF
    We identify and analyze the perfectly regular dripping mode of flow focusing. This mode occurs within narrow intervals of injected flow rates and applied pressure drops and leads to homogeneous-size droplets with diameters similar to or smaller than that of the discharge orifice. The balance between the local acceleration of the fluid particle and the applied pressure drop yields the scaling law for the droplet diameter. This scaling law is validated experimentally with excellent accord.Ministerio de Economía, Industria y Competitividad DPI2013-46485Gobierno de Extremadura GR1004
    corecore