310 research outputs found
Presenilin-dependent intramembrane cleavage of ephrin-B1
BACKGROUND: Presenilin-dependent γ-secretase cleavage of several transmembrane proteins, including amyloid-β precursor protein and Notch, mediates the intramembrane proteolysis to liberate their intracellular domains that are involved in cellular signaling. Considering γ-secretase inhibitors as therapeutics for Alzheimer's disease, understanding the physiologically and biologically important substrate for γ-secretase activity in brains is emerging issue. To elucidate the molecular mechanism and physiological role of γ-secretase, we screened candidate molecules for γ-secretase substrates. RESULTS: We show that ephrin-B1, that participates in cell-cell repulsive and attractive signaling together with its Eph receptor, constitutively undergoes ectodomain shedding and that the residual membrane-tethered fragment is sequentially cleaved by γ-secretase to release the intracellular domain. Furthermore, overexpression of membrane-tethered ephrin-B1 caused protrusion of numerous cellular processes consisted of F-actin, that required the preservation of the most C-terminal region of ephrin-B1. In contrast, soluble intracellular domain translocated into the nucleus and had no effect on cell morphology. CONCLUSION: Our findings suggest that ephrin-B is a genuine substrate for γ-secretase and regulates the cytoskeletal dynamics through intramembrane proteolysis
Analysis of the phenomenon of speculative trading in one of its basic manifestations: postage stamp bubbles
We document and analyze the empirical facts concerning one of the clearest
evidence of speculation in financial trading as observed in the postage
collection stamp market. We unravel some of the mechanisms of speculative
behavior which emphasize the role of fancy and collective behavior. In our
conclusion, we propose a classification of speculative markets based on two
parameters, namely the amplitude of the price peak and a second parameter that
measures its ``sharpness''. This study is offered to anchor modeling efforts to
realistic market constraints and observations.Comment: 9 pages, 5 figures and 2 tables, in press in Int. J. Mod. Phys.
Dominant and differential deposition of distinct β-amyloid peptide species, AβN3(pE), in senile plaques
AbstractWe analyzed an amino-terminal modification of β-amyloid (Aβ) peptide in brain, using anti-Aβ antibodies that distinguish distinct molecular species. Examination of cortical sections from 28 aged individuals with a wide range in senile plaque density revealed that a molecular species distinct from the standard Aβ is deposited in the brain in a dominant and differential manner. This modified Aβ peptide (AβN3(pE)) starts at the 3rd amino-terminal residue of the standard Aβ, glutamate, converted to pyroglutamate through intramolecular dehydration. Because plaques composed of AβN3(pE) are present in equivalent or greater densities than those composed of standard Aβ bearing the first aminoterminal residue (AβN1) and because deposition of the former species appears to precede deposition of the latter, as confirmed with specimens from Down's syndrome patients, the processes involved in AβN3(pE) production and retention may play an early and critical role in senile plaque formation
A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons
Notch signaling plays crucial roles for cellular differentiation during development through γ-secretase-dependent intramembrane proteolysis followed by transcription of target genes. Although recent studies implicate that Notch regulates synaptic plasticity or cognitive performance, the molecular mechanism how Notch works in mature neurons remains uncertain. Here we demonstrate that a novel Notch signaling is involved in expression of synaptic proteins in postmitotic neurons. Levels of several synaptic vesicle proteins including synaptophysin 1 and VGLUT1 were increased when neurons were cocultured with Notch ligands-expressing NIH3T3 cells. Neuron-specific deletion of Notch genes decreased these proteins, suggesting that Notch signaling maintains the expression of synaptic vesicle proteins in a cell-autonomous manner. Unexpectedly, cGMP-dependent protein kinase (PKG) inhibitor, but not γ-secretase inhibitor, abolished the elevation of synaptic vesicle proteins, suggesting that generation of Notch intracellular domain is dispensable for this function. These data uncover a ligand-dependent, but γ-secretase-independent, non-canonical Notch signaling involved in presynaptic protein expression in postmitotic neurons
Genji Monogatari Emaki, "Suma" "Akashi"(The illustrated handscroll of the Tale of Genji) : owned by the Tamba Sasayama Municipal Institute of History of Art
資料紹介application/pdfdepartmental bulletin pape
Notes on "Sangyoku-chojisho
裏表紙の英文タイトルの表記に誤りあり (誤)chogisho → (正)chojishoapplication/pdfdepartmental bulletin pape
Introduction of "The tale of Genji picture book" in the collection of the Museum of Shiga Prefecture, Biwako-Bunkakan
資料(Material)application/pdfdepartmental bulletin pape
- …