65 research outputs found

    Investigating laser induced phase engineering in MoS2 transistors

    Full text link
    Phase engineering of MoS2 transistors has recently been demonstrated and has led to record low contact resistances. The phase patterning of MoS2 flakes with laser radiation has also been realized via spectroscopic methods, which invites the potential of controlling the metallic and semiconducting phases of MoS2 transistors by simple light exposure. Nevertheless, the fabrication and demonstration of laser patterned MoS2 devices starting from the metallic polymorph has not been demonstrated yet. Here, we study the effects of laser radiation on 1T/1T'-MoS2 transistors with the prospect of driving an in-situ phase transition to the 2H-polymorph through light exposure. We find that although the Raman peaks of 2H-MoS2 become more prominent and the ones from the 1T/1T' phase fade after the laser exposure, the semiconducting properties of the laser patterned devices are not fully restored and the laser treatment ultimately leads to degradation of the transport channel

    Thickness dependent interlayer transport in vertical MoS2 Josephson junctions

    Full text link
    We report on observations of thickness dependent Josephson coupling and multiple Andreev reflections (MAR) in vertically stacked molybdenum disulfide (MoS2) - molybdenum rhenium (MoRe) Josephson junctions. MoRe, a chemically inert superconductor, allows for oxide free fabrication of high transparency vertical MoS2 devices. Single and bilayer MoS2 junctions display relatively large critical currents (up to 2.5 uA) and the appearance of sub-gap structure given by MAR. In three and four layer thick devices we observe orders of magnitude lower critical currents (sub-nA) and reduced quasiparticle gaps due to proximitized MoS2 layers in contact with MoRe. We anticipate that this device architecture could be easily extended to other 2D materials.Comment: 18 pages, 6 figures including Supporting Informatio

    Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    Full text link
    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in good agreement with the observed experimental optical transmittance.Comment: 18 pages, 4 figures, including Supporting Information (6 pages, 6 figures

    Quantum Logic Control and Precision Measurements of Molecular Ions in a Ring Trap: An Approach for Testing Fundamental Symmetries

    Get PDF
    This paper presents an experimental platform designed to facilitate quantum logic control of polar molecular ions in a segmented ring ion trap, paving the way for precision measurements. This approach focuses on achieving near-unity state preparation and detection, as well as long spin-precession coherence. A distinctive aspect lies in separating state preparation and detection conducted in a static frame from parity-selective spin precession in a rotating frame. Moreover, the method is designed to support spatially and temporally coincident measurements on multiple ions prepared in states with different sensitivity to the new physics of interest. This provides powerful techniques to probe and minimize potential sources of systematic error. While the primary focus of this paper is on detecting the electron\u27s electric dipole moment (eEDM) using 232ThF+ ions, the proposed methodology holds promise for broader applications, particularly with ion species that exhibit enhanced sensitivity to the nuclear magnetic quadruple moment (nMQM)

    Isolation and characterization of few-layer black phosphorus

    Full text link
    Isolation and characterization of mechanically exfoliated black phosphorus flakes with a thickness down to two single-layers is presented. A modification of the mechanical exfoliation method, which provides higher yield of atomically thin flakes than conventional mechanical exfoliation, has been developed. We present general guidelines to determine the number of layers using optical microscopy, Raman spectroscopy and transmission electron microscopy in a fast and reliable way. Moreover, we demonstrate that the exfoliated flakes are highly crystalline and that they are stable even in free-standing form through Raman spectroscopy and transmission electron microscopy measurements. A strong thickness dependence of the band structure is found by density functional theory calculations. The exciton binding energy, within an effective mass approximation, is also calculated for different number of layers. Our computational results for the optical gap are consistent with preliminary photoluminescence results on thin flakes. Finally, we study the environmental stability of black phosphorus flakes finding that the flakes are very hydrophilic and that long term exposure to air moisture etches black phosphorus away. Nonetheless, we demonstrate that the aging of the flakes is slow enough to allow fabrication of field-effect transistors with strong ambipolar behavior. Density functional theory calculations also give us insight into the water-induced changes of the structural and electronic properties of black phosphorus.Comment: 11 main figures, 7 supporting figure

    On-Chip Sub-Diffraction THz Spectroscopy of Materials and Liquids

    Get PDF
    This chapter summarizes the trends in terahertz measurements on the surface of rigid and flexible substrates. It focuses on research incorporating fast photoconductive switches to generate and detect on-chip THz pulses using a femtosecond laser. The chapter aims to review progress toward the study of picosecond dynamics and THz spectroscopy of materials and liquids. We emphasize general sub-diffraction techniques for THz spectroscopy, transmission line and waveguide design considerations, time-domain measurements for studies of material dynamics, and provide a survey of recent research on the THz spectroscopy of materials and liquids on-chip. We conclude with an outlook on the field and highlight promising new directions. This chapter is meant to be an introduction and a general guide to this emerging field for new researchers interested in on-chip THz studies
    corecore