223 research outputs found
Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements
This paper reviews short baseline oscillation experiments as interpreted
within the context of one, two, and three sterile neutrino models associated
with additional neutrino mass states in the ~1 eV range. Appearance and
disappearance signals and limits are considered. We show that fitting short
baseline data sets to a (3+3) model, defined by three active and three sterile
neutrinos, results in an overall goodness of fit of 67%, and a compatibility of
90% among all data sets -- to be compared to the compatibility of 0.043% and
13% for a (3+1) and a (3+2) model, respectively. While the (3+3) fit yields the
highest quality overall, it still finds inconsistencies with the MiniBooNE
appearance data sets; in particular, the global fit fails to account for the
observed MiniBooNE low-energy excess. Given the overall improvement, we
recommend using the results of (3+2) and (3+3) fits, rather than (3+1) fits,
for future neutrino oscillation phenomenology. These results motivate the
pursuit of further short baseline experiments, such as those reviewed in this
paper.Comment: Submitted to Advances in High Energy Physics Special Issue on
Neutrino Physic
A Measurement of the Absorption of Liquid Argon Scintillation Light by Dissolved Nitrogen at the Part-Per-Million Level
We report on a measurement of the absorption length of scintillation light in
liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We
inject controlled quantities of nitrogen into a high purity volume of liquid
argon and monitor the light yield from an alpha source. The source is placed at
different distances from a cryogenic photomultiplier tube assembly. By
comparing the light yield from each position we extract the absorption cross
section of nitrogen. We find that nitrogen absorbs argon scintillation light
with strength of ,
corresponding to an absorption cross section of . We obtain the relationship
between absorption length and nitrogen concentration over the 0 to 50 ppm range
and discuss the implications for the design and data analysis of future large
liquid argon time projection chamber (LArTPC) detectors. Our results indicate
that for a current-generation LArTPC, where a concentration of 2 parts per
million of nitrogen is expected, the attenuation length due to nitrogen will be
meters.Comment: v2: Correct mistake in molecular absorption cross section
calculation, and a minor typo in fig
Measuring Active-to-Sterile Neutrino Oscillations with Neutral Current Coherent Neutrino-Nucleus Scattering
Light sterile neutrinos have been introduced as an explanation for a number
of oscillation signals at eV. Neutrino oscillations at
relatively short baselines provide a probe of these possible new states. This
paper describes an accelerator-based experiment using neutral current coherent
neutrino-nucleus scattering to strictly search for active-to-sterile neutrino
oscillations. This experiment could, thus, definitively establish the existence
of sterile neutrinos and provide constraints on their mixing parameters. A
cyclotron-based proton beam can be directed to multiple targets, producing a
low energy pion and muon decay-at-rest neutrino source with variable distance
to a single detector. Two types of detectors are considered: a germanium-based
detector inspired by the CDMS design and a liquid argon detector inspired by
the proposed CLEAR experiment.Comment: 10 pages, 7 figure
Demonstration of a Lightguide Detector for Liquid Argon TPCs
We report demonstration of light detection in liquid argon using an acrylic
lightguide detector system. This opens the opportunity for development of an
inexpensive, large-area light collection system for large liquid argon time
projection chambers. The guides are constructed of acrylic, with TPB embedded
in a surface coating with a matching index of refraction. We study the response
to early scintillation light produced by a 5.3 MeV alpha. We measure coating
responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE
on average. We estimate the attenuation length of light along the lightguide
bar to be greater than 0.5 m. The coating response and the attenuation length
can be improved; we show, however, that these results are already sufficient
for triggering in a large detector
Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems
Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we show that the response of lightguides coated with TPB in a UV Transmitting (UVT) acrylic matrix is very similar to that of a coating using a polystyrene (PS) matrix. We obtain a factor of three higher light yield than has been previously reported from lightguides. This paper provides information on the response of the lightguides so that these can be modeled in simulations for future LArTPCs. This paper also identifies areas of R&D for potential improvements in the lightguide respons
Environmental Effects on TPB Wavelength-Shifting Coatings
The scintillation detection systems of liquid argon time projection chambers
(LArTPCs) require wavelength shifters to detect the 128 nm scintillation light
produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material
that can shift this light to a wavelength of 425 nm, lending itself well to use
in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with
TPB or place TPB-coated plates in front of the PMTs.
In this paper, we investigate the degradation of a chemical TPB coating in a
laboratory or factory environment to assess the viability of long-term TPB film
storage prior to its initial installation in an LArTPC. We present evidence for
severe degradation due to common fluorescent lights and ambient sunlight in
laboratories, with potential losses at the 40% level in the first day and
eventual losses at the 80% level after a month of exposure. We determine the
degradation is due to wavelengths in the UV spectrum, and we demonstrate
mitigating methods for retrofitting lab and factory environments
- …