13,278 research outputs found

    A three dimensional model of the Venusian thermosphere with superrotation

    Get PDF
    An improved three dimensional spectral model of the thermosphere of Venus is described. The model solves the Navier-Stokes equations and includes nonlinear effects for an arbitrary number of atmospheric species. A two dimensional axisymmetric model of the superrotation of the thermosphere is also presented. This model addresses the Pioneer-Venus mission finding, which suggested the thermospheric rotation rate to be much higher than that of the planet as seen from the asymmetric distribution of hydrogen and helium. Both models include the effects of an anisotropic eddy diffusion that is consistent with atmospheric mixing length theory

    Sensitivity to open boundary forcing in a fine-resolution model of the Iberian shelf-slope region

    Get PDF

    The investigation of particle acceleration in colliding-wind massive binaries with SIMBOL-X

    Get PDF
    An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries (CWBs) is known to accelerate particles up to relativistic energies. In this context, non-thermal emission processes such as inverse Compton (IC) scattering are expected to produce a high energy spectrum, in addition to the strong thermal emission from the shock-heated plasma. SIMBOL-X will be the ideal observatory to investigate the hard X-ray spectrum (above 10 keV) of these systems, i.e. where it is no longer dominated by the thermal emission. Such observations are strongly needed to constrain the models aimed at understanding the physics of particle acceleration in CWB. Such systems are important laboratories for investigating the underlying physics of particle acceleration at high Mach number shocks, and probe a different region of parameter space than studies of supernova remnants.Comment: 2 pages, 2 figures, to appear in the proceedings of the workshop "Simbol-X: the hard X-ray universe in focus", held in Bologna, Italy (14-16 May 2007

    Design considerations for large space electric power systems

    Get PDF
    As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed

    Passive tracers in a general circulation model of the Southern Ocean

    Get PDF

    Sources of quantum waves

    Get PDF
    Due to the space and time dependence of the wave function in the time dependent Schroedinger equation, different boundary conditions are possible. The equation is usually solved as an ``initial value problem'', by fixing the value of the wave function in all space at a given instant. We compare this standard approach to "source boundary conditions'' that fix the wave at all times in a given region, in particular at a point in one dimension. In contrast to the well-known physical interpretation of the initial-value-problem approach, the interpretation of the source approach has remained unclear, since it introduces negative energy components, even for ``free motion'', and a time-dependent norm. This work provides physical meaning to the source method by finding the link with equivalent initial value problems.Comment: 12 pages, 7 inlined figures; typos correcte

    Spitzer/MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+1

    Get PDF
    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR 1257+12. With accuracies of 0.05 mJy at 24 um and 1.5 mJy at 70 um, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3×10−53 \times 10^{-5} of the pulsar's spin-down luminosity, three orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the Solar System's cannot be ruled out

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table
    • …
    corecore