13,278 research outputs found
A three dimensional model of the Venusian thermosphere with superrotation
An improved three dimensional spectral model of the thermosphere of Venus is described. The model solves the Navier-Stokes equations and includes nonlinear effects for an arbitrary number of atmospheric species. A two dimensional axisymmetric model of the superrotation of the thermosphere is also presented. This model addresses the Pioneer-Venus mission finding, which suggested the thermospheric rotation rate to be much higher than that of the planet as seen from the asymmetric distribution of hydrogen and helium. Both models include the effects of an anisotropic eddy diffusion that is consistent with atmospheric mixing length theory
The investigation of particle acceleration in colliding-wind massive binaries with SIMBOL-X
An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries
(CWBs) is known to accelerate particles up to relativistic energies. In this
context, non-thermal emission processes such as inverse Compton (IC) scattering
are expected to produce a high energy spectrum, in addition to the strong
thermal emission from the shock-heated plasma. SIMBOL-X will be the ideal
observatory to investigate the hard X-ray spectrum (above 10 keV) of these
systems, i.e. where it is no longer dominated by the thermal emission. Such
observations are strongly needed to constrain the models aimed at understanding
the physics of particle acceleration in CWB. Such systems are important
laboratories for investigating the underlying physics of particle acceleration
at high Mach number shocks, and probe a different region of parameter space
than studies of supernova remnants.Comment: 2 pages, 2 figures, to appear in the proceedings of the workshop
"Simbol-X: the hard X-ray universe in focus", held in Bologna, Italy (14-16
May 2007
Design considerations for large space electric power systems
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed
Sources of quantum waves
Due to the space and time dependence of the wave function in the time
dependent Schroedinger equation, different boundary conditions are possible.
The equation is usually solved as an ``initial value problem'', by fixing the
value of the wave function in all space at a given instant. We compare this
standard approach to "source boundary conditions'' that fix the wave at all
times in a given region, in particular at a point in one dimension. In contrast
to the well-known physical interpretation of the initial-value-problem
approach, the interpretation of the source approach has remained unclear, since
it introduces negative energy components, even for ``free motion'', and a
time-dependent norm. This work provides physical meaning to the source method
by finding the link with equivalent initial value problems.Comment: 12 pages, 7 inlined figures; typos correcte
Perspectives and Opportunities for Precompetitive Public–Private Partnerships in the Biomedical Sector
info:eu-repo/semantics/publishe
Spitzer/MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+1
With the MIPS camera on Spitzer, we have searched for far-infrared emission
from dust in the planetary system orbiting pulsar PSR 1257+12. With accuracies
of 0.05 mJy at 24 um and 1.5 mJy at 70 um, photometric measurements find no
evidence for emission at these wavelengths. These observations place new upper
limits on the luminosity of dust with temperatures between 20 and 1000 K. They
are particularly sensitive to dust temperatures of 100-200 K, for which they
limit the dust luminosity to below of the pulsar's spin-down
luminosity, three orders of magnitude better than previous limits. Despite
these improved constraints on dust emission, an asteroid belt similar to the
Solar System's cannot be ruled out
Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase
Magnetic and magnetoelastic properties of terbium titanate pyrochlore in
paramagnetic phase are simulated. The magnetic field and temperature
dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single
crystals and polycrystalline samples are calculated in the framework of
exchange charge model of crystal field theory and a mean field approximation.
The set of electron-deformation coupling constants has been determined.
Variations of elastic constants with temperature and applied magnetic field are
discussed. Additional strong softening of the crystal lattice at liquid helium
temperatures in the magnetic field directed along the rhombic symmetry axis is
predicted.Comment: 13 pages, 4 figures, 2 table
- …