32 research outputs found
Additional file 1: of Interspecies evolutionary divergence in Liriodendron, evidence from the nucleotide variations of LcDHN-like gene
Table S1. Primers and PCR protocol for RACE amplification and ORF testing. Table S2. Characteristics of properties and structure about LcDHN-like proteins in Liriodendron. P1-P17, proteins from L. chinense; P18-P58, proteins from L. tulipifera. (DOCX 27 kb
Additional file 2: of Interspecies evolutionary divergence in Liriodendron, evidence from the nucleotide variations of LcDHN-like gene
5’ RACE, 3’ RACE and cDNA sequences of LcDHN-like gene. (DOCX 15 kb
Additional file 3: of Interspecies evolutionary divergence in Liriodendron, evidence from the nucleotide variations of LcDHN-like gene
311 LcDHN-like gDNA sequences in Liriodendron. (DOCX 152 kb
MOESM1 of Transcriptomic and microstructural analyses in Liriodendron tulipifera Linn. reveal candidate genes involved in nectary development and nectar secretion
Additional file1: Table S1. List of 21 DEGs primers used for RT-qPCR
Data_Sheet_1_The Roles of microRNA-Long Non-coding RNA-mRNA Networks in the Regulation of Leaf and Flower Development in Liriodendron chinense.zip
The leaf and the flower are vital plant organs owing to their roles in photosynthesis and reproduction. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and transcription factors (TFs) are very important to the development of these organs. Liriodendron chinense is a common ornamental tree species in southern China with an unusual leaf shape and tulip-like flowers. The genetic mechanisms underlying leaf and flower development in L. chinense and the miRNA-lncRNA-TF regulatory networks are poorly studied. Through the integration and analysis of different types of sequencing data, we identified the miRNA-lncRNA-TF regulatory networks that were related to leaf and flower development. These networks contained 105 miRNAs, 258 lncRNAs, 393 TFs, and 22 endogenous target mimics. Notably, lch-lnc7374-miR156h-SPL3 and lch-lnc7374-miR156j-SPL9 were potential regulators of stamen and pistil development in L. chinense, respectively. miRNA-lncRNA-mRNA regulatory networks were shown to impact anther development, male and female fertility, and petal color by regulating the biosynthesis of phenylpropanoid metabolites. Phenylpropanoid metabolite biosynthesis genes and TFs that were targeted by miRNAs and lncRNAs were differentially expressed in the leaf and flower. Moreover, RT-qPCR analysis confirmed 22 differentially expressed miRNAs, among which most of them showed obvious leaf or flower specificity; miR157a-SPL and miR160a-ARF module were verified by using RLM-RACE, and these two modules were related to leaf and flower development. These findings provide insight into the roles of miRNA-lncRNA-mRNA regulatory networks in organ development and function in L. chinense, and will facilitate further investigation into the regulatory mechanisms of leaf and flower development in L. chinense.</p
Image_2_Genome-wide identification of XTH genes in Liriodendron chinense and functional characterization of LcXTH21.jpeg
Liriodendron chinense is a relic tree species of the family Magnoliaceae with multiple uses in timber production, landscape decoration, and afforestation. L. chinense often experiences drought stress in arid areas. However, the molecular basis underlying the drought response of L. chinense remains unclear. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in drought stress resistance. Hereby, to explore the drought resistance mechanism of L. chinense, we identify XTH genes on a genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L. chinense, and these genes were classified into three subfamilies. Drought treatment and RT-qPCR analysis revealed that six LcXTH genes significantly responded to drought stress, especially LcXTH21. Hence, we cloned the LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its function. The roots of transgenic plants were more developed than those of wild-type plants under different polyethylene glycol (PEG) concentration, and further RT-qPCR analysis showed that LcXTH21 highly expressed in root compared to aboveground organs, indicating that LcXTH21 may play a role in drought resistance through promoting root development. The results of this study provide new insights into the roles of LcXTH genes in the drought stress response. Our findings will also aid future studies of the molecular mechanisms by which LcXTH genes contribute to the drought response.</p
Table_4_Genome-wide identification of XTH genes in Liriodendron chinense and functional characterization of LcXTH21.xlsx
Liriodendron chinense is a relic tree species of the family Magnoliaceae with multiple uses in timber production, landscape decoration, and afforestation. L. chinense often experiences drought stress in arid areas. However, the molecular basis underlying the drought response of L. chinense remains unclear. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in drought stress resistance. Hereby, to explore the drought resistance mechanism of L. chinense, we identify XTH genes on a genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L. chinense, and these genes were classified into three subfamilies. Drought treatment and RT-qPCR analysis revealed that six LcXTH genes significantly responded to drought stress, especially LcXTH21. Hence, we cloned the LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its function. The roots of transgenic plants were more developed than those of wild-type plants under different polyethylene glycol (PEG) concentration, and further RT-qPCR analysis showed that LcXTH21 highly expressed in root compared to aboveground organs, indicating that LcXTH21 may play a role in drought resistance through promoting root development. The results of this study provide new insights into the roles of LcXTH genes in the drought stress response. Our findings will also aid future studies of the molecular mechanisms by which LcXTH genes contribute to the drought response.</p
Table_1_Genome-wide identification of XTH genes in Liriodendron chinense and functional characterization of LcXTH21.docx
Liriodendron chinense is a relic tree species of the family Magnoliaceae with multiple uses in timber production, landscape decoration, and afforestation. L. chinense often experiences drought stress in arid areas. However, the molecular basis underlying the drought response of L. chinense remains unclear. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in drought stress resistance. Hereby, to explore the drought resistance mechanism of L. chinense, we identify XTH genes on a genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L. chinense, and these genes were classified into three subfamilies. Drought treatment and RT-qPCR analysis revealed that six LcXTH genes significantly responded to drought stress, especially LcXTH21. Hence, we cloned the LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its function. The roots of transgenic plants were more developed than those of wild-type plants under different polyethylene glycol (PEG) concentration, and further RT-qPCR analysis showed that LcXTH21 highly expressed in root compared to aboveground organs, indicating that LcXTH21 may play a role in drought resistance through promoting root development. The results of this study provide new insights into the roles of LcXTH genes in the drought stress response. Our findings will also aid future studies of the molecular mechanisms by which LcXTH genes contribute to the drought response.</p
Image_4_Genome-wide identification of XTH genes in Liriodendron chinense and functional characterization of LcXTH21.jpeg
Liriodendron chinense is a relic tree species of the family Magnoliaceae with multiple uses in timber production, landscape decoration, and afforestation. L. chinense often experiences drought stress in arid areas. However, the molecular basis underlying the drought response of L. chinense remains unclear. Many studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in drought stress resistance. Hereby, to explore the drought resistance mechanism of L. chinense, we identify XTH genes on a genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L. chinense, and these genes were classified into three subfamilies. Drought treatment and RT-qPCR analysis revealed that six LcXTH genes significantly responded to drought stress, especially LcXTH21. Hence, we cloned the LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its function. The roots of transgenic plants were more developed than those of wild-type plants under different polyethylene glycol (PEG) concentration, and further RT-qPCR analysis showed that LcXTH21 highly expressed in root compared to aboveground organs, indicating that LcXTH21 may play a role in drought resistance through promoting root development. The results of this study provide new insights into the roles of LcXTH genes in the drought stress response. Our findings will also aid future studies of the molecular mechanisms by which LcXTH genes contribute to the drought response.</p
Table_1_Genome-wide identification and characterization of LcCCR13 reveals its potential role in lignin biosynthesis in Liriodendron chinense.xlsx
IntroductionWood formation is closely related to lignin biosynthesis. Cinnamoyl-CoA reductase (CCR) catalyzes the conversion of cinnamoyl-CoA to cinnamaldehydes, which is the initiation of the lignin biosynthesis pathway and a crucial point in the manipulation of associated traits. Liriodendron chinense is an economically significant timber tree. Nevertheless, the underlying mechanism of wood formation in it remains unknown; even the number of LcCCR family members in this species is unclear.Materials and ResultsThis study aimed to perform a genome-wide identification of genes(s) involved in lignin biosynthesis in L. chinense via RT-qPCR assays and functional verification. Altogether, 13 LcCCR genes were identified that were divided into four major groups based on structural and phylogenetic features. The gene structures and motif compositions were strongly conserved between members of the same groups. Subsequently, the expression patterns analysis based on RNA-seq data indicated that LcCCR5/7/10/12/13 had high expression in the developing xylem at the stem (DXS). Furthermore, the RT-qPCR assays showed that LcCCR13 had the highest expression in the stem as compared to other tissues. Moreover, the overexpression of the LcCCR13 in transgenic tobacco plants caused an improvement in the CCR activity and lignin content, indicating that it plays a key role in lignin biosynthesis in the stems.DiscussionOur research lays a foundation for deeper investigation of the lignin synthesis and uncovers the genetic basis of wood formation in L. chinense.</p