95 research outputs found

    Unsteady-flow-field predictions for oscillating cascades

    Get PDF
    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory

    Pressure wave propagation studies for oscillating cascades

    Get PDF
    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved

    Numerical simulations of unsteady, viscous, transonic flow over isolated and cascaded airfoils using a deforming grid

    Get PDF
    A compressible, unsteady, full Navier-Stokes, finite difference code was developed for modeling transonic flow through two-dimensional, oscillating cascades. The procedure introduces a deforming grid technique to capture the motion of the airfoils. Results using a deforming grid are presented for both isolated and cascaded airfoils. The load histories and unsteady pressure distributions are predicted for the NASA 64A010 isolated airfoil and compared with existing experimental data. Results show that the deforming grid technique can be used to successfully predict the unsteady flow properties around an oscillating airfoil. The deforming grid technique was extended for modeling unsteady flow in a cascade. The use of a deforming grid simplifies the specification of boundary conditions. Unsteady flow solutions similar to the isolated airfoil predictions are found for a NACA 0012 cascade with zero interblade phase angle and zero stagger. Experimental data for these cases are not available for code validation, but computational results are presented to show sample predictions from the code. Applications of the code to typical turbomachinery flow conditions will be presented in future work

    Numerical analysis of flow through oscillating cascade sections

    Get PDF
    The design of turbomachinery blades requires the prevention of flutter for all operating conditions. However, flow field predictions used for aeroelastic analysis are not well understood for all flow regimes. The present research focuses on numerical solutions of the Euler and Navier-Stokes equations using an ADI procedure to model two-dimensional, transonic flow through oscillating cascades. The model prescribes harmonic pitching motions for the blade sections for both zero and nonzero interblade phase angles. The code introduces the use of a deforming grid technique for convenient specification of the periodic boundary conditions. Approximate nonreflecting boundary conditions were coded for the inlet and exit boundary conditions. Sample unsteady solutions were performed for an oscillating cascade and compared to experimental data. Also, test cases were run for a flat plate cascade to compare with the unsteady, small-perturbation, subsonic analyis. The predictions for oscillating cascades with nonzero interblade phase angle cases, which were near a resonant condition, differ from the experiment and theory. The zero degree interblade phase angle cases, which were near a resonant condition, differ from the experiment and theory. Studies on reflecting versus nonreflecting inlet and exit boundary conditions show that the treatment of the boundary can have a significant effect on the first harmonic, unsteady pressure distributions for certain flow conditions

    Source Noise Modeling Efforts for Fan Noise in NASA Research Programs

    Get PDF
    There has been considerable progress made in fan noise prediction over the past 15 years. NASA has conducted and sponsored research that has improved both tone and broadband fan noise prediction methods. This presentation highlights progress in these areas with emphasis on rotor/stator interaction noise sources. Tone noise predictions are presented for an advanced prediction code called "LINFLUX". Comparisons with data are" included for individual fan duct modes. There has also been considerable work developing new fan broadband noise prediction codes and validation data from wind tunnel model tests. Results from several code validation exercises are presented that show improvement of predicted sound power levels. A summary is included with recommendations for future work

    Noise Reduction Technologies for Turbofan Engines

    Get PDF
    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given

    Technologies for Aircraft Noise Reduction

    Get PDF
    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction

    NASA Glenn's Contributions to Aircraft Engine Noise Research

    Get PDF
    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport

    Numerical simulations of supersonic flow through oscillating cascade sections

    Get PDF
    A finite difference code was developed for modeling inviscid, unsteady supersonic flow by solution of the compressible Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate cascade is analyzed, and results are compared with results from a small perturbation theory. The results show very good agreement for both the unsteady pressure distributions and the integrated force predictions. The reason for using the numerical Euler code over a small perturbation theory is the ability to model real airfoils that have thickness and camber. Sample predictions are presented for a cascade of loaded airfoils and show appreciable differences in the unsteady surface pressure distributions when compared with the flat plate results

    Numerical analysis of supersonic flow through oscillating cascade sections by using a deforming grid

    Get PDF
    A finite difference code was developed for modeling inviscid, unsteady supersonic flow by solution of the compressible Euler equations. The code uses a deforming grid technique to capture the motion of the airfoils and can model oscillating cascades with any arbitrary interblade phase angle. A flat plate cascade is analyzed, and results are compared with results from a small-perturbation theory. The results show very good agreement for both the unsteady pressure distributions and the integrated force predictions. The reason for using the numerical Euler code over a small-perturbation theory is the ability to model real airfoils that have thickness and camber. Sample predictions are presented for a section of the rotor on a supersonic throughflow compressor designed at NASA Lewis Research Center. Preliminary results indicate that two-dimensional, flat plate analysis predicts conservative flutter boundaries
    corecore