9,063 research outputs found

    Timely-Throughput Optimal Scheduling with Prediction

    Full text link
    Motivated by the increasing importance of providing delay-guaranteed services in general computing and communication systems, and the recent wide adoption of learning and prediction in network control, in this work, we consider a general stochastic single-server multi-user system and investigate the fundamental benefit of predictive scheduling in improving timely-throughput, being the rate of packets that are delivered to destinations before their deadlines. By adopting an error rate-based prediction model, we first derive a Markov decision process (MDP) solution to optimize the timely-throughput objective subject to an average resource consumption constraint. Based on a packet-level decomposition of the MDP, we explicitly characterize the optimal scheduling policy and rigorously quantify the timely-throughput improvement due to predictive-service, which scales as Θ(p[C1(aβˆ’amax⁑q)pβˆ’qρτ+C2(1βˆ’1p)](1βˆ’ΟD))\Theta(p\left[C_{1}\frac{(a-a_{\max}q)}{p-q}\rho^{\tau}+C_{2}(1-\frac{1}{p})\right](1-\rho^{D})), where a,amax⁑,ρ∈(0,1),C1>0,C2β‰₯0a, a_{\max}, \rho\in(0, 1), C_1>0, C_2\ge0 are constants, pp is the true-positive rate in prediction, qq is the false-negative rate, Ο„\tau is the packet deadline and DD is the prediction window size. We also conduct extensive simulations to validate our theoretical findings. Our results provide novel insights into how prediction and system parameters impact performance and provide useful guidelines for designing predictive low-latency control algorithms.Comment: 14 pages, 7 figure

    Model Selection for Gaussian Mixture Models

    Full text link
    This paper is concerned with an important issue in finite mixture modelling, the selection of the number of mixing components. We propose a new penalized likelihood method for model selection of finite multivariate Gaussian mixture models. The proposed method is shown to be statistically consistent in determining of the number of components. A modified EM algorithm is developed to simultaneously select the number of components and to estimate the mixing weights, i.e. the mixing probabilities, and unknown parameters of Gaussian distributions. Simulations and a real data analysis are presented to illustrate the performance of the proposed method

    Generalized gene co-expression analysis via subspace clustering using low-rank representation

    Get PDF
    BACKGROUND: Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological functions and has become a popular method in bioinformatics and biomedical research. However, most current GCNA algorithms use correlation to build gene co-expression networks and identify modules with highly correlated genes. There is a need to look beyond correlation and identify gene modules using other similarity measures for finding novel biologically meaningful modules. RESULTS: We propose a new generalized gene co-expression analysis algorithm via subspace clustering that can identify biologically meaningful gene co-expression modules with genes that are not all highly correlated. We use low-rank representation to construct gene co-expression networks and local maximal quasi-clique merger to identify gene co-expression modules. We applied our method on three large microarray datasets and a single-cell RNA sequencing dataset. We demonstrate that our method can identify gene modules with different biological functions than current GCNA methods and find gene modules with prognostic values. CONCLUSIONS: The presented method takes advantage of subspace clustering to generate gene co-expression networks rather than using correlation as the similarity measure between genes. Our generalized GCNA method can provide new insights from gene expression datasets and serve as a complement to current GCNA algorithms

    QCD critical end point from a realistic PNJL model

    Full text link
    With parameters fixed by critical temperature and equation of state at zero baryon chemical potential, a realistic Polyakov--Nambu--Jona-Lasinio (rPNJL) model predicts a critical end point of chiral phase transition at (ΞΌBE=720MeV,TE=93MeV)(\mu_B^E= 720 {\rm MeV}, T^E=93 {\rm MeV}). The extracted freeze-out line from heavy ion collisions is close to the chiral phase transition boundary in the rPNJL model, and the kurtosis ΞΊΟƒ2\kappa \sigma^2 of baryon number fluctuations from the rPNJL model along the experimental freeze-out line agrees well with the BES-I measurement. Our analysis shows that the dip structure of measured ΞΊΟƒ2\kappa\sigma^2 is determined by the relationship between the freeze-out line and chiral phase transition line at low baryon density region, and the peak structure can be regarded as a clean signature for the existence of CEP.Comment: 8 papges, proceedings of QCD@Work 201
    • …
    corecore