9,063 research outputs found
Timely-Throughput Optimal Scheduling with Prediction
Motivated by the increasing importance of providing delay-guaranteed services
in general computing and communication systems, and the recent wide adoption of
learning and prediction in network control, in this work, we consider a general
stochastic single-server multi-user system and investigate the fundamental
benefit of predictive scheduling in improving timely-throughput, being the rate
of packets that are delivered to destinations before their deadlines. By
adopting an error rate-based prediction model, we first derive a Markov
decision process (MDP) solution to optimize the timely-throughput objective
subject to an average resource consumption constraint. Based on a packet-level
decomposition of the MDP, we explicitly characterize the optimal scheduling
policy and rigorously quantify the timely-throughput improvement due to
predictive-service, which scales as
,
where are constants, is the
true-positive rate in prediction, is the false-negative rate, is the
packet deadline and is the prediction window size. We also conduct
extensive simulations to validate our theoretical findings. Our results provide
novel insights into how prediction and system parameters impact performance and
provide useful guidelines for designing predictive low-latency control
algorithms.Comment: 14 pages, 7 figure
Model Selection for Gaussian Mixture Models
This paper is concerned with an important issue in finite mixture modelling,
the selection of the number of mixing components. We propose a new penalized
likelihood method for model selection of finite multivariate Gaussian mixture
models. The proposed method is shown to be statistically consistent in
determining of the number of components. A modified EM algorithm is developed
to simultaneously select the number of components and to estimate the mixing
weights, i.e. the mixing probabilities, and unknown parameters of Gaussian
distributions. Simulations and a real data analysis are presented to illustrate
the performance of the proposed method
Generalized gene co-expression analysis via subspace clustering using low-rank representation
BACKGROUND:
Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological functions and has become a popular method in bioinformatics and biomedical research. However, most current GCNA algorithms use correlation to build gene co-expression networks and identify modules with highly correlated genes. There is a need to look beyond correlation and identify gene modules using other similarity measures for finding novel biologically meaningful modules.
RESULTS:
We propose a new generalized gene co-expression analysis algorithm via subspace clustering that can identify biologically meaningful gene co-expression modules with genes that are not all highly correlated. We use low-rank representation to construct gene co-expression networks and local maximal quasi-clique merger to identify gene co-expression modules. We applied our method on three large microarray datasets and a single-cell RNA sequencing dataset. We demonstrate that our method can identify gene modules with different biological functions than current GCNA methods and find gene modules with prognostic values.
CONCLUSIONS:
The presented method takes advantage of subspace clustering to generate gene co-expression networks rather than using correlation as the similarity measure between genes. Our generalized GCNA method can provide new insights from gene expression datasets and serve as a complement to current GCNA algorithms
QCD critical end point from a realistic PNJL model
With parameters fixed by critical temperature and equation of state at zero
baryon chemical potential, a realistic Polyakov--Nambu--Jona-Lasinio (rPNJL)
model predicts a critical end point of chiral phase transition at . The extracted freeze-out line from heavy ion
collisions is close to the chiral phase transition boundary in the rPNJL model,
and the kurtosis of baryon number fluctuations from the rPNJL
model along the experimental freeze-out line agrees well with the BES-I
measurement. Our analysis shows that the dip structure of measured
is determined by the relationship between the freeze-out line
and chiral phase transition line at low baryon density region, and the peak
structure can be regarded as a clean signature for the existence of CEP.Comment: 8 papges, proceedings of QCD@Work 201
- β¦