284 research outputs found

    New Periodic Solutions of Singular Hamiltonian Systems with Fixed Energies

    Get PDF
    By using the variational minimizing method with a special constraint and the direct variational minimizing method without constraint, we study second order Hamiltonian systems with a singular potential V∈C2(Rn\O,R)V\in C^2(R^n\backslash O,R) and V∈C1(R2\O,R)V\in C^1(R^2\backslash O,R) which may have an unbounded potential well, and prove the existence of non-trivial periodic solutions with a prescribed energy. Our results can be regarded as some complements of the well-known Theorems of Benci-Gluck-Ziller-Hayashi and Ambrosetti-Coti Zelati and so on

    STAR-RIS Aided Secure MIMO Communication Systems

    Full text link
    This paper investigates simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) aided physical layer security (PLS) in multiple-input multiple-output (MIMO) systems, where the base station (BS) transmits secrecy information with the aid of STAR-RIS against multiple eavesdroppers equipped with multiple antennas. We aim to maximize the secrecy rate by jointly optimizing the active beamforming at the BS and passive beamforming at the STAR-RIS, subject to the hardware constraint for STAR-RIS. To handle the coupling variables, a minimum mean-square error (MMSE) based alternating optimization (AO) algorithm is applied. In particular, the amplitudes and phases of STAR-RIS are divided into two blocks to simplify the algorithm design. Besides, by applying the Majorization-Minimization (MM) method, we derive a closed-form expression of the STAR-RIS's phase shifts. Numerical results show that the proposed scheme significantly outperforms various benchmark schemes, especially as the number of STAR-RIS elements increases

    Integrated Sensing and Communication: Joint Pilot and Transmission Design

    Full text link
    This paper studies a communication-centric integrated sensing and communication (ISAC) system, where a multi-antenna base station (BS) simultaneously performs downlink communication and target detection. A novel target detection and information transmission protocol is proposed, where the BS executes the channel estimation and beamforming successively and meanwhile jointly exploits the pilot sequences in the channel estimation stage and user information in the transmission stage to assist target detection. We investigate the joint design of pilot matrix, training duration, and transmit beamforming to maximize the probability of target detection, subject to the minimum achievable rate required by the user. However, designing the optimal pilot matrix is rather challenging since there is no closed-form expression of the detection probability with respect to the pilot matrix. To tackle this difficulty, we resort to designing the pilot matrix based on the information-theoretic criterion to maximize the mutual information (MI) between the received observations and BS-target channel coefficients for target detection. We first derive the optimal pilot matrix for both channel estimation and target detection, and then propose an unified pilot matrix structure to balance minimizing the channel estimation error (MSE) and maximizing MI. Based on the proposed structure, a low-complexity successive refinement algorithm is proposed. Simulation results demonstrate that the proposed pilot matrix structure can well balance the MSE-MI and the Rate-MI tradeoffs, and show the significant region improvement of our proposed design as compared to other benchmark schemes. Furthermore, it is unveiled that as the communication channel is more correlated, the Rate-MI region can be further enlarged.Comment: This papar answers the optimal space code-time design for supporting ISA

    Secure Intelligent Reflecting Surface Aided Integrated Sensing and Communication

    Full text link
    In this paper, an intelligent reflecting surface (IRS) is leveraged to enhance the physical layer security of an integrated sensing and communication (ISAC) system in which the IRS is deployed to not only assist the downlink communication for multiple users, but also create a virtual line-of-sight (LoS) link for target sensing. In particular, we consider a challenging scenario where the target may be a suspicious eavesdropper that potentially intercepts the communication-user information transmitted by the base station (BS). We investigate the joint design of the phase shifts at the IRS and the communication as well as radar beamformers at the BS to maximize the sensing beampattern gain towards the target, subject to the maximum information leakage to the eavesdropping target and the minimum signal-to-interference-plus-noise ratio (SINR) required by users. Based on the availability of perfect channel state information (CSI) of all involved user links and the accurate target location at the BS, two scenarios are considered and two different optimization algorithms are proposed. For the ideal scenario where the CSI of the user links and the target location are perfectly known at the BS, a penalty-based algorithm is proposed to obtain a high-quality solution. In particular, the beamformers are obtained with a semi-closed-form solution using Lagrange duality and the IRS phase shifts are solved for in closed form by applying the majorization-minimization (MM) method. On the other hand, for the more practical scenario where the CSI is imperfect and the target location is uncertain, a robust algorithm based on the S\cal S-procedure and sign-definiteness approaches is proposed. Simulation results demonstrate the effectiveness of the proposed scheme in achieving a trade-off between the communication quality and the sensing quality.Comment: This paper has been submitted to IEEE journal for possible publicatio

    Intelligent Reflecting Surface Assisted Localization: Performance Analysis and Algorithm Design

    Full text link
    The target sensing/localization performance is fundamentally limited by the line-of-sight link and severe signal attenuation over long distances. This paper considers a challenging scenario where the direct link between the base station (BS) and the target is blocked due to the surrounding blockages and leverages the intelligent reflecting surface (IRS) with some active sensors, termed as \textit{semi-passive IRS}, for localization. To be specific, the active sensors receive echo signals reflected by the target and apply signal processing techniques to estimate the target location. We consider the joint time-of-arrival (ToA) and direction-of-arrival (DoA) estimation for localization and derive the corresponding Cram\'{e}r-Rao bound (CRB), and then a simple ToA/DoA estimator without iteration is proposed. In particular, the relationships of the CRB for ToA/DoA with the number of frames for IRS beam adjustments, number of IRS reflecting elements, and number of sensors are theoretically analyzed and demystified. Simulation results show that the proposed semi-passive IRS architecture provides sub-meter level positioning accuracy even over a long localization range from the BS to the target and also demonstrate a significant localization accuracy improvement compared to the fully passive IRS architecture.Comment: The paper has been submitted to IEEE journal for possible publicatio
    • …
    corecore