4,447 research outputs found
Using a laser aureole to invert lidar return
An aureole generated by a laser beam was studied. The strength of the signal redirected towards a sensor high above the surface by a combination of one scattering event in the marine boundary layer (mbl) and one single reflection event from the ocean surface was estimated. A model of mbl aerosol size distributions was used to estimate Mie scattering for a wide range of meteorolocial conditions. The sea surface reflection was determined from a Gaussian model of the wave slopes. These laser aureoles which were estimated over the wide range of conditions and were normalized by the reflected laser light were found to be highly correlated with the optical depth of the boundary layer. By estimating optical depth from the aureole, the Bernoulli-Riccati inversion of lidar return could be constrained and the inversion accuracy improved. A Monte Carlo program was developed to study the laser aureole generated by up to 8 orders of reflection and scattering. The aureole was generated by a narrow, 10 nsec laser pulse at 1.06 microns and measured by a receiver 10 km above the ocean surface. The original theoretical computation compared well with the Monte Carlo method. When multiple scattereffects were included, the normalized aureole was still highly correlated with the mbl optical depth over the range of conditions
Primordial Black Holes, Hawking Radiation and the Early Universe
The 511 keV gamma emission from the galactic core may originate from a high
concentration () of primordial black holes (PBHs) in the core
each of whose Hawking radiation includes positrons per second.
The PBHs we consider are taken as near the lightest with longevity greater than
the age of the universe (mass kg; Schwarzschild radius
fm). These PBHs contribute only a small fraction of cold dark matter,
. This speculative hypothesis, if confirmed implies
the simultaneous discovery of Hawking radiation and an early universe phase
transition.Comment: 4 Page
Lunar Flight Study Series: Volume 8. Earth-Moon Transit Studies Based on Ephemeris Data and Using Best Available Computer Program. Part 3: Analysis of Some Lunar Landing Site Problems Utilizing Two Fundamental Principles
This report presents two fundamental properties of lunar trajectories and makes use of these properties to solve various lunar landing site problems. Not only are various problems treated and solved but the properties and methods are established for use in the solution of other problems. This report presents an analysis of lunar landing site problems utilizing the direct mission mode as well as the orbital mission mode. A particular landing site is then specified and different flight profiles are analyzed for getting an exploration vehicle to that landing site. Rendezvous compatible lunar orbits for various stay-times at the landing site are treated. Launch opportunities are discussed for establishing rendezvous compatible lunar orbits without powered plane changes. Then, the minimum required plane changes for rendezvous in the lunar orbit are discussed for launching from earth on any day. On days that afford rendezvous compatible opportunities, there are no powered plane change requirements in the operations from launch at AMR through the rendezvous in lunar orbit, after the stay at the lunar site
Satellite applications to marine geodesy
Potential use of satellites for enhancing positioning capabilities and for marine geodetic contro
The Role of Ligand Steric Bulk in New Monovalent Aluminum Compounds
The article of record as published may be located at https://doi.org/10.1021/acs.jpca.7b02075The tetrameric Al(I) cyclopentadienyl compound Al4Cp*4 (Cp* = C5Me5) is a prototypical low-valence Al compound, with delocalized bonding between four Al(I) atoms and η5 ligands bound to the cluster exterior. The synthesis of new [AlR]4 (R = C5Me4Pr, C5Me4iPr) tetramers is presented. Though these systems failed to crystallize, comparison of variable-temperature 27Al NMR data with density functional theory (DFT) calculations indicate that these are Al4R4 tetramers analogous to Al4Cp*4 but with increased ligand steric bulk. NMR, DFT, and Atoms in Molecules analyses show that these clusters are enthalpically more stable as tetramers than the Cp* variant, due in part to noncovalent interactions across the bulkier ligand groups. Thermochemistry calculations for the low-valence metal interactions were found to be extremely sensitive to the DFT methodology used; the M06-2X functional with a cc-pVTZ basis set is shown to provide very accurate values for the enthalpy of tetramerization and 27Al NMR shifts. This computational method is then used to predict geometrical structures, noncovalent ligand interactions, and monomer/tetramer equilibrium in solution for a series of Al(I) cyclopentadienyl compounds of varying steric bulk
Ergodic directions for billiards in a strip with periodically located obstacles
We study the size of the set of ergodic directions for the directional
billiard flows on the infinite band with periodically placed
linear barriers of length . We prove that the set of ergodic
directions is always uncountable. Moreover, if is rational
the Hausdorff dimension of the set of ergodic directions is greater than 1/2.
In both cases (rational and irrational) we construct explicitly some sets of
ergodic directions.Comment: The article is complementary to arXiv:1109.458
Maverick dark matter at colliders
Assuming that dark matter is a weakly interacting massive particle (WIMP)
species X produced in the early Universe as a cold thermal relic, we study the
collider signal of pp or ppbar -> XXbar + jets and its distinguishability from
standard-model background processes associated with jets and missing energy. We
assume that the WIMP is the sole particle related to dark matter within reach
of the LHC--a "maverick" particle--and that it couples to quarks through a
higher dimensional contact interaction. We simulate the WIMP final-state signal
XXbar + jet and dominant standard-model (SM) background processes and find that
the dark-matter production process results in higher energies for the colored
final state partons than do the standard-model background processes, resulting
in more QCD radiation and a higher jet multiplicity. As a consequence, the
detectable signature of maverick dark matter is an excess over standard-model
expectations of events consisting of large missing transverse energy, together
with large leading jet transverse momentum and scalar sum of the transverse
momenta of the jets. Existing Tevatron data and forthcoming LHC data can
constrain (or discover!) maverick dark matter.Comment: 11 pages, 7 figure
- …