8 research outputs found
Data_Sheet_1_Dynamic connectivity patterns of resting-state brain functional networks in healthy individuals after acute alcohol intake.docx
AimsCurrently, there are only a few studies concerning brain functional alterations after acute alcohol exposure, and the majority of existing studies attach more importance to the spatial properties of brain function without considering the temporal properties. The current study adopted sliding window to investigate the resting-state brain networks in healthy volunteers after acute alcohol intake and to explore the dynamic changes in network connectivity.Materials and methodsTwenty healthy volunteers were enrolled in this study. Blood-oxygen-level-dependent (BOLD) data prior to drinking were obtained as control, while that 0.5 and 1 h after drinking were obtained as the experimental group. Reoccurring functional connectivity patterns (states) were determined following group independent component analysis (ICA), sliding window analysis and k-means clustering. Between-group comparisons were performed with respect to the functional connectivity states fractional windows, mean dwell time, and the number of transitions.ResultsThree optimal functional connectivity states were identified. The fractional windows and mean dwell time of 0.5 h group and 1 h group increased in state 3, while the fraction window and mean dwell time of 1 h group decreased in state 1. State 1 is characterized by strong inter-network connections between basal ganglia network (BGN) and sensorimotor network (SMN), BGN and cognitive executive network (CEN), and default mode network (DMN) and visual network (VN). However, state 3 is distinguished by relatively weak intra-network connections in SMN, VN, CEN, and DMN. State 3 was thought to be a characteristic connectivity pattern of the drunk brain. State 1 was believed to represent the brain’s main connection pattern when awake. Such dynamic changes in brain network connectivity were consistent with participants’ subjective feelings after drinking.ConclusionThe current study reveals the dynamic change in resting-state brain functional network connectivity before and after acute alcohol intake. It was discovered that there might be relatively independent characteristic functional network connection patterns under intoxication, and the corresponding patterns characterize the clinical manifestations of volunteers. As a valuable imaging biomarker, dynamic functional network connectivity (dFNC) offers a new approach and basis for further explorations on brain network alterations after alcohol consumption and the alcohol-related mechanisms for neurological damage.</p
Data_Sheet_2_Dynamic connectivity patterns of resting-state brain functional networks in healthy individuals after acute alcohol intake.xlsx
AimsCurrently, there are only a few studies concerning brain functional alterations after acute alcohol exposure, and the majority of existing studies attach more importance to the spatial properties of brain function without considering the temporal properties. The current study adopted sliding window to investigate the resting-state brain networks in healthy volunteers after acute alcohol intake and to explore the dynamic changes in network connectivity.Materials and methodsTwenty healthy volunteers were enrolled in this study. Blood-oxygen-level-dependent (BOLD) data prior to drinking were obtained as control, while that 0.5 and 1 h after drinking were obtained as the experimental group. Reoccurring functional connectivity patterns (states) were determined following group independent component analysis (ICA), sliding window analysis and k-means clustering. Between-group comparisons were performed with respect to the functional connectivity states fractional windows, mean dwell time, and the number of transitions.ResultsThree optimal functional connectivity states were identified. The fractional windows and mean dwell time of 0.5 h group and 1 h group increased in state 3, while the fraction window and mean dwell time of 1 h group decreased in state 1. State 1 is characterized by strong inter-network connections between basal ganglia network (BGN) and sensorimotor network (SMN), BGN and cognitive executive network (CEN), and default mode network (DMN) and visual network (VN). However, state 3 is distinguished by relatively weak intra-network connections in SMN, VN, CEN, and DMN. State 3 was thought to be a characteristic connectivity pattern of the drunk brain. State 1 was believed to represent the brain’s main connection pattern when awake. Such dynamic changes in brain network connectivity were consistent with participants’ subjective feelings after drinking.ConclusionThe current study reveals the dynamic change in resting-state brain functional network connectivity before and after acute alcohol intake. It was discovered that there might be relatively independent characteristic functional network connection patterns under intoxication, and the corresponding patterns characterize the clinical manifestations of volunteers. As a valuable imaging biomarker, dynamic functional network connectivity (dFNC) offers a new approach and basis for further explorations on brain network alterations after alcohol consumption and the alcohol-related mechanisms for neurological damage.</p
Data_Sheet_1_Analysis on topological alterations of functional brain networks after acute alcohol intake using resting-state functional magnetic resonance imaging and graph theory.pdf
AimsAlcohol consumption could lead to a series of health problems and social issues. In the current study, we investigated the resting-state functional brain networks of healthy volunteers before and after drinking through graph-theory analysis, aiming to ascertain the effects of acute alcohol intake on topology and information processing mode of the functional brain networks.Materials and methodsThirty-three healthy volunteers were enrolled in this experiment. Each volunteer accepted alcohol breathalyzer tests followed by resting-state magnetic resonance imaging at three time points: before drinking, 0.5 h after drinking, and 1 h after drinking. The data obtained were grouped based on scanning time into control group, 0.5-h group and 1-h group, and post-drinking data were regrouped according to breath alcohol concentration (BrAC) into relative low BrAC group (A group; 0.5-h data, n = 17; 1-h data, n = 16) and relative high BrAC group (B group; 0.5-h data, n = 16; 1-h data, n = 17). The graph-theory approach was adopted to construct whole-brain functional networks and identify the differences of network topological properties among all the groups.ResultsThe network topology of most groups was altered after drinking, with the B group presenting the most alterations. For global network measures, B group exhibited increased global efficiency, Synchronization, and decreased local efficiency, clustering coefficient, normalized clustering coefficient, characteristic path length, normalized characteristic path length, as compared to control group. Regarding nodal network measures, nodal clustering coefficient and nodal local efficiency of some nodes were lower in B group than control group. These changes suggested that the network integration ability and synchrony improved, while the segregation ability diminished.ConclusionThis study revealed the effects of acute alcohol intake on the topology and information processing mode of resting-state functional brain networks, providing new perceptions and insights into the effects of alcohol on the brain.</p
Summary of FA values at the TB, SON, IC, MGB, AR and WHG of the good/ poor outcome group of SNHL patients.
<p>Values are presented as mean±SD</p><p>*Statistically significant difference.</p><p>FA values measured at the TB, SON, IC, MGB, AR and WHG of the good outcome group of SNHL patients were compared with the poor group.</p><p>Summary of FA values at the TB, SON, IC, MGB, AR and WHG of the good/ poor outcome group of SNHL patients.</p
Representative DT imaging of the ROIs.
<p>(a) the trapezoid body, (b) superior olivary nucleus, (c) inferior colliculus, (d) medial geniculate body, (e) the auditory radiation, (f) the white matter of Heschl's gyrus, (square box) the selected ROI.</p
Summary of FA values at the TB, SON, IC, MGB, AR and WHG in the SNHL and control groups.
<p>Values are presented as mean ± SD</p><p>*Statistically significant difference.</p><p>FA values measured at the TB, SON, IC, MGB, AR and WHG of the SNHL group were compared with the control group.</p><p>Summary of FA values at the TB, SON, IC, MGB, AR and WHG in the SNHL and control groups.</p
Clinical and audiogram data of patients.
<p>Values are presented as mean±SD.</p><p>*Statistically significant difference.</p><p>CI, cochlear implantation; ABR, auditory brainstem response; CAP, categories of auditory performance.</p><p>Clinical and audiogram data of patients.</p
Summary of MD values at the TB, SON, IC, MGB, AR and WHG in the SNHL and control groups.
<p>Values are presented as mean ± SD; MD values measured at the TB, SON, IC, MGB, AR and WHG of the SNHL group were compared with the control group.</p><p>Summary of MD values at the TB, SON, IC, MGB, AR and WHG in the SNHL and control groups.</p