4 research outputs found
Additional file 1: of Functions of CaPhm7 in the regulation of ion homeostasis, drug tolerance, filamentation and virulence in Candida albicans
Figure S1. Amino acid sequence comparison. Transmembrane domain (TM) regions of AtCsc1 and CaPhm7 are underlined, and TM names of AtCsc1 (blue) and CaPhm7 (red) are indicated. TMs were predicted with SMART ( http://smart.embl-heidelberg.de /). Identical amino acid residues are indicated in yellow in color, and similar amino acid residues are indicated in light blue and green. Figure S2. Disruption of CaPHM7. (A) Disruption strategy of the two alleles. PCR confirmation of genotypes of the homozygous mutant PHBCA62 with primer pairs CaPHM7-ORF-UP/DOWN (B), CaPHM7-DF/DR (C) as well as CaPHM7-DF/NAT-R (middle lane) and CaPHM7-DR/NAT-F (last lane) (D). Figure S3. TMs of AtCsc1, ScPhm7 and CaPhm7 as well as their amino acid sequence comparison. Identical amino acid residues are indicated in yellow in color, and similar amino acid residues are indicated in light blue and green. Figure S4. Growth assay. Cells were cultured in SD-URA medium at 30 °C overnight, diluted for 10 times in fresh YPD medium and grown further for indicated hours. Data were the average of three independent experiments. Growth rates of the heterozygous mutant, the homozygous mutant and the revertant were not significantly different from the wild type. Figure S5. Western blot analysis. The CAI4 control, PHBCA107 and PHBCA126 cells were grown to log-phase and collected for total protein extraction. Western blot analysis was carried out with the monoclonal anti-GFP antibody. The CaPHM7-GFP protein of 126 kDa was indicated. Figure S6. Amino acid sequence comparison. CaPhm7 shares 18% (34%) and 14% (30%) identity (similarity) with human HsAno10 and S. cerevisiae ScIst2, respectively. Identical amino acid residues are indicated in yellow in color, and similar amino acid residues are indicated in light blue and green. Table S1. Primers used in this study. (PDF 5687 kb
Video_1_A new contribution to the raptorial ciliate genus Lacrymaria (Protista: Ciliophora): a brief review and comprehensive descriptions of two new species from Changjiang Estuary.MP4
Ciliates serve as excellent indicators for water quality monitoring. However, their utilization is hindered by various taxonomic confusions. The ciliate genus Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic habitats, but its taxonomy has been sparsely investigated using state-of-the-art methods. This study investigated two new Lacrymaria species from Nanhui Wetland, Shanghai, China, using living observation, protargol staining, and molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.</p
Video_2_A new contribution to the raptorial ciliate genus Lacrymaria (Protista: Ciliophora): a brief review and comprehensive descriptions of two new species from Changjiang Estuary.MP4
Ciliates serve as excellent indicators for water quality monitoring. However, their utilization is hindered by various taxonomic confusions. The ciliate genus Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic habitats, but its taxonomy has been sparsely investigated using state-of-the-art methods. This study investigated two new Lacrymaria species from Nanhui Wetland, Shanghai, China, using living observation, protargol staining, and molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.</p
Table_1_A new contribution to the raptorial ciliate genus Lacrymaria (Protista: Ciliophora): a brief review and comprehensive descriptions of two new species from Changjiang Estuary.DOCX
Ciliates serve as excellent indicators for water quality monitoring. However, their utilization is hindered by various taxonomic confusions. The ciliate genus Lacrymaria Bory de Saint-Vincent, 1824 is commonly found in different aquatic habitats, but its taxonomy has been sparsely investigated using state-of-the-art methods. This study investigated two new Lacrymaria species from Nanhui Wetland, Shanghai, China, using living observation, protargol staining, and molecular phylogeny methods. Lacrymaria songi sp. nov. is 180–340 × 20–25 μm in size and possesses 12–16 somatic kineties, 1 terminal contractile vacuole, 2 macronuclear nodules, and 2 types of rod-shaped extrusomes. Lacrymaria dragescoi sp. nov. is distinguished from its congeners by its cell size of 210–400 × 25–35 μm, 14–17 somatic kineties, 1 terminal contractile vacuole, 1 macronucleus, and 2 types of rod-shaped extrusomes. Phylogenetic analyses based on SSU rRNA gene sequences indicate that Lacrymariidae is monophyletic but Lacrymaria is not. Additionally, a brief review of the genus Lacrymaria is provided in this study. We suggest that L. bulbosa Alekperov, 1984, L. lanceolata Kahl, 1930, and L. ovata Burkovsky, 1970 be removed from the genus and propose Phialina lanceolata nov. comb. and Phialina ovata nov. comb. for the latter two.ZooBank registration: Present work: urn:lsid:zoobank.org:pub:CDFB1EBD-80BD-4533-B391-CEE89F62EDC4 Lacrymaria songi sp. nov.: urn:lsid:zoobank.org:act:417E7C2D-DAEC-4711-90BB-64AB3CD2F7D5 Lacrymaria dragescoi sp. nov.: urn:lsid:zoobank.org:act:8778D6B0-1F2E-473C-BE19-3F685391A40D.</p
