10,378 research outputs found
On pattern classification algorithms - Introduction and survey
Pattern recognition algorithms, and mathematical techniques of estimation, decision making, and optimization theor
A Monolithically Fabricated Combinatorial Mixer for Microchip-Based High-Throughput Cell Culturing Assays
We present an integrated method to fabricate 3-
D microfluidic networks and fabricated the first on-chip
cell culture device with an integrated combinatorial mixer.
The combinatorial mixer is designed for screening the
combinatorial effects of different compounds on cells. The
monolithic fabrication method with parylene C as the
basic structural material allows us to avoid wafer bonding
and achieves precise alignment between microfluidic
channels. As a proof-of-concept, we fabricated a device
with a three-input combinatorial mixer and demonstrated
that the mixer can produce all the possible combinations.
Also, we demonstrated the ability to culture cells on-chip
and performed a simple cell assay on-chip using trypan
blue to stain dead cells
Distributed Stochastic Optimization over Time-Varying Noisy Network
This paper is concerned with distributed stochastic multi-agent optimization
problem over a class of time-varying network with slowly decreasing
communication noise effects. This paper considers the problem in composite
optimization setting which is more general in noisy network optimization. It is
noteworthy that existing methods for noisy network optimization are Euclidean
projection based. We present two related different classes of non-Euclidean
methods and investigate their convergence behavior. One is distributed
stochastic composite mirror descent type method (DSCMD-N) which provides a more
general algorithm framework than former works in this literature. As a
counterpart, we also consider a composite dual averaging type method (DSCDA-N)
for noisy network optimization. Some main error bounds for DSCMD-N and DSCDA-N
are obtained. The trade-off among stepsizes, noise decreasing rates,
convergence rates of algorithm is analyzed in detail. To the best of our
knowledge, this is the first work to analyze and derive convergence rates of
optimization algorithm in noisy network optimization. We show that an optimal
rate of in nonsmooth convex optimization can be obtained for
proposed methods under appropriate communication noise condition. Moveover,
convergence rates in different orders are comprehensively derived in both
expectation convergence and high probability convergence sense.Comment: 27 page
The Carnegie-Irvine Galaxy Survey. V. Statistical study of bars and buckled bars
Simulations have shown that bars are subject to a vertical buckling
instability that transforms thin bars into boxy or peanut-shaped structures,
but the physical conditions necessary for buckling to occur are not fully
understood. We use the large sample of local disk galaxies in the
Carnegie-Irvine Galaxy Survey to examine the incidence of bars and buckled bars
across the Hubble sequence. Depending on the disk inclination angle (), a
buckled bar reveals itself as either a boxy/peanut-shaped bulge (at high )
or as a barlens structure (at low ). We visually identify bars,
boxy/peanut-shaped bulges, and barlenses, and examine the dependence of bar and
buckled bar fractions on host galaxy properties, including Hubble type, stellar
mass, color, and gas mass fraction. We find that the barred and unbarred disks
show similar distributions in these physical parameters. The bar fraction is
higher (70\%--80\%) in late-type disks with low stellar mass () and high gas mass ratio. In contrast, the buckled bar
fraction increases to 80\% toward massive and early-type disks (), and decreases with higher gas mass ratio. These
results suggest that bars are more difficult to grow in massive disks that are
dynamically hotter than low-mass disks. However, once a bar forms, it can
easily buckle in the massive disks, where a deeper potential can sustain the
vertical resonant orbits. We also find a probable buckling bar candidate (ESO
506G004) that could provide further clues to understand the timescale of the
buckling process.Comment: 9 pages, 7 figures, 2 tables. Accepted for publication in The
Astrophysical Journa
A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem
Disturbance noises are always bounded in a practical system, while fusion
estimation is to best utilize multiple sensor data containing noises for the
purpose of estimating a quantity--a parameter or process. However, few results
are focused on the information fusion estimation problem under bounded noises.
In this paper, we study the distributed fusion estimation problem for linear
time-varying systems and nonlinear systems with bounded noises, where the
addressed noises do not provide any statistical information, and are unknown
but bounded. When considering linear time-varying fusion systems with bounded
noises, a new local Kalman-like estimator is designed such that the square
error of the estimator is bounded as time goes to . A novel
constructive method is proposed to find an upper bound of fusion estimation
error, then a convex optimization problem on the design of an optimal weighting
fusion criterion is established in terms of linear matrix inequalities, which
can be solved by standard software packages. Furthermore, according to the
design method of linear time-varying fusion systems, each local nonlinear
estimator is derived for nonlinear systems with bounded noises by using Taylor
series expansion, and a corresponding distributed fusion criterion is obtained
by solving a convex optimization problem. Finally, target tracking system and
localization of a mobile robot are given to show the advantages and
effectiveness of the proposed methods.Comment: 9 pages, 3 figure
The Carnegie-Irvine Galaxy Survey. III. The Three-Component Structure of Nearby Elliptical Galaxies
Motivated by recent developments in our understanding of the formation and
evolution of massive galaxies, we explore the detailed photometric structure of
a representative sample of 94 bright, nearby elliptical galaxies, using
high-quality optical images from the Carnegie-Irvine Galaxy Survey. The sample
spans a range of environments and stellar masses, from M* = 10^{10.2} to
10^{12.0} solar mass. We exploit the unique capabilities of two-dimensional
image decomposition to explore the possibility that local elliptical galaxies
may contain photometrically distinct substructure that can shed light on their
evolutionary history. Compared with the traditional one-dimensional approach,
these two-dimensional models are capable of consistently recovering the surface
brightness distribution and the systematic radial variation of geometric
information at the same time. Contrary to conventional perception, we find that
the global light distribution of the majority (>75%) of elliptical galaxies is
not well described by a single Sersic function. Instead, we propose that local
elliptical galaxies generically contain three subcomponents: a compact (R_e < 1
kpc) inner component with luminosity fraction f ~ 0.1-0.15; an
intermediate-scale (R_e ~ 2.5 kpc) middle component with f ~ 0.2-0.25; and a
dominant (f = 0.6), extended (R_e ~ 10 kpc) outer envelope. All subcomponents
have average Sersic indices n ~ 1-2, significantly lower than the values
typically obtained from single-component fits. The individual subcomponents
follow well-defined photometric scaling relations and the stellar mass-size
relation. We discuss the physical nature of the substructures and their
implications for the formation of massive elliptical galaxies.Comment: To appear in The Astrophysical Journal; 36 pages, 2 tables, 38
figures; For the full resolution version, see:
http://users.obs.carnegiescience.edu/shuang/PaperIII.pdf ; For the atlas of
all selected models, see
http://users.obs.carnegiescience.edu/shuang/AppendixE.pd
The Carnegie-Irvine Galaxy Survey. IV. A Method to Determine the Average Mass Ratio of Mergers That Built Massive Elliptical Galaxies
Many recent observations and numerical simulations suggest that nearby
massive, early-type galaxies were formed through a "two-phase" process. In the
proposed second phase, the extended stellar envelope was accumulated through
many dry mergers. However, details of the past merger history of present-day
ellipticals, such as the typical merger mass ratio, are difficult to constrain
observationally. Within the context and assumptions of the two-phase formation
scenario, we propose a straightforward method, using photometric data alone, to
estimate the average mass ratio of mergers that contributed to the build-up of
massive elliptical galaxies. We study a sample of nearby massive elliptical
galaxies selected from the Carnegie-Irvine Galaxy Survey, using two-dimensional
analysis to decompose their light distribution into an inner, denser component
plus an extended, outer envelope, each having a different optical color. The
combination of these two substructures accurately recovers the negative color
gradient exhibited by the galaxy as whole. The color difference between the two
components ( ~ 0.10 mag; ~ 0.14 mag), based on the
slope of the M_stellar-color relation for nearby early-type galaxies, can be
translated into an estimate of the average mass ratio of the mergers. The rough
estimate, 1:5 to 1:10, is consistent with the expectation of the two-phase
formation scenario, suggesting that minor mergers were largely responsible for
building up to the outer stellar envelope of present-day massive ellipticals.
With the help of accurate photometry, large sample size, and more choices of
colors promised by ongoing and future surveys, the approach proposed here can
reveal more insights into the growth of massive galaxies during the last few
Gyr.Comment: Accepted by ApJ; 20 pages, 11 figures, 1 table; The high resolution
figures and the full table can be downloaded from here:
https://github.com/dr-guangtou/cgs_colorgra
- …